Skip to main content
Log in

Extracellular vesicle-carried Jagged-1 inhibits HUVEC sprouting in a 3D microenvironment

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

NOTCH signalling is an evolutionarily conserved juxtacrine signalling pathway that is essential in development. Jagged1 (JAG1) and Delta-like ligand 4 (DLL4) are transmembrane NOTCH ligands that regulate angiogenesis by controlling endothelial cell (EC) differentiation, vascular development and maturation. In addition, DLL4 could bypass its canonical cell–cell contact-dependent signalling to influence NOTCH signalling and angiogenesis at a distance when it is packaged into extracellular vesicles (EVs). However, it is not clear whether JAG1 could also be packaged into EVs to influence NOTCH signalling and angiogenesis. In this work, we demonstrate that JAG1 is also packaged into EVs. We present evidence that JAG1-EVs inhibit NOTCH signalling and regulate EC behaviour and function. JAG1-EVs inhibited VEGF-induced HUVEC proliferation and migration in 2D culture condition and suppressed sprouting in a 3D microfluidic microenvironment. JAG1-EV treatment of HUVECs leads to a reduction of Notch1 intracellular domain (N1-ICD), and the proteasome and the intracellular domain of JAG1 (JAG1-ICD) are both required for this reduction to occur. These findings reveal a novel mechanism of JAG1 function in NOTCH signalling and ECs through EVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray S (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689. https://doi.org/10.1038/nrm2009

    Article  PubMed  CAS  Google Scholar 

  2. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. https://doi.org/10.1083/jcb.200302047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kume T (2009) Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res 1:8. https://doi.org/10.1186/2040-2384-1-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a006569

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lobov IB, Renard RA, Papadopoulos N et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219–3224. https://doi.org/10.1073/pnas.0611206104

    Article  PubMed  CAS  Google Scholar 

  6. Suchting S, Freitas C, le Noble F et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci 104:3225–3230. https://doi.org/10.1073/pnas.0611177104

    Article  PubMed  CAS  Google Scholar 

  7. Hellström M, Phng L-K, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780. https://doi.org/10.1038/nature05571

    Article  PubMed  CAS  Google Scholar 

  8. Benedito R, Roca C, Sörensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  PubMed  CAS  Google Scholar 

  9. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sheldon H, Heikamp E, Turley H et al (2010) New mechanism for Notch signaling to endothelium at a distance by delta-like 4 incorporation into exosomes. Blood 116:2385–2394. https://doi.org/10.1182/blood-2009-08-239228

    Article  PubMed  CAS  Google Scholar 

  11. Sharghi-Namini S, Tan E, Ong L-LS et al (2014) Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep 4:4031. https://doi.org/10.1038/srep04031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kilani RT, Chavez-mun C (2009) Profile of exosomes related proteins released by differentiated and undifferentiated human keratinocytes. J Cell Physiol 221:221–231. https://doi.org/10.1002/jcp.21847

    Article  PubMed  CAS  Google Scholar 

  13. Liang B, Peng P, Chen S et al (2013) Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics 80:171–182. https://doi.org/10.1016/j.jprot.2012.12.029

    Article  PubMed  CAS  Google Scholar 

  14. Beckler MD, Higginbotham JN, Franklin JL et al (2013) Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics. https://doi.org/10.1074/mcp.M112.022806

    Article  Google Scholar 

  15. Lazar I, Clement E, Ducoux-petit M et al (2015) Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines Ikrame. Pigment Cell Melanoma Res 28:464–475. https://doi.org/10.1111/pcmr.12380

    Article  PubMed  CAS  Google Scholar 

  16. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived Jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205. https://doi.org/10.1016/j.ccr.2010.12.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ (2014) A novel “salting-out” procedure for the isolation of tumor-derived exosomes. J Immunol Methods 407:120–126. https://doi.org/10.1016/j.jim.2014.04.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mitchell JP, Court J, Mason MD et al (2008) Increased exosome production from tumour cell cultures using the Integra CELLine culture system. J Immunol Methods 335:98–105. https://doi.org/10.1016/j.jim.2008.03.001

    Article  PubMed  CAS  Google Scholar 

  19. Farahat WA, Wood LB, Zervantonakis IK et al (2012) Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures. PLoS ONE. https://doi.org/10.1371/journal.pone.0037333

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lötvall J, Hill AF, Hochberg F et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles 3:1–6. https://doi.org/10.3402/jev.v3.26913

    Article  Google Scholar 

  21. Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372:157–165. https://doi.org/10.1016/j.ydbio.2012.09.018

    Article  PubMed  CAS  Google Scholar 

  22. Noseda M, Chang L, McLean G et al (2004) Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol 24:8813–8822. https://doi.org/10.1128/MCB.24.20.8813-8822.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Takeshita K, Satoh M, Ii M et al (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100:70–78. https://doi.org/10.1161/01.RES.0000254788.47304.6e

    Article  PubMed  CAS  Google Scholar 

  24. D’Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical notch ligands. Curr Top Dev Biol 92:73–129. https://doi.org/10.1016/S0070-2153(10)92003-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kim MY, Jung J, Mo JS et al (2011) The intracellular domain of Jagged-1 interacts with Notch1 intracellular domain and promotes its degradation through Fbw7 E3 ligase. Exp Cell Res 317:2438–2446. https://doi.org/10.1016/j.yexcr.2011.07.014

    Article  PubMed  CAS  Google Scholar 

  26. Metrich M, Bezdek Pomey A, Berthonneche C et al (2015) Jagged1 intracellular domain-mediated inhibition of Notch1 signalling regulates cardiac homeostasis in the postnatal heart. Cardiovasc Res 108:74–86. https://doi.org/10.1093/cvr/cvv209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pedrosa AR, Trindade A, Fernandes AC et al (2015) Endothelial jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1. Arterioscler Thromb Vasc Biol 35:1134–1146. https://doi.org/10.1161/ATVBAHA.114.304741

    Article  PubMed  CAS  Google Scholar 

  28. Kadesch T (2000) Notch signaling: a dance of proteins changing partners. Exp Cell Res 260:1–8. https://doi.org/10.1006/excr.2000.4921

    Article  PubMed  CAS  Google Scholar 

  29. Öberg C, Li J, Pauley A et al (2001) The notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 276:35847–35853. https://doi.org/10.1074/jbc.M103992200

    Article  PubMed  Google Scholar 

  30. Liebler SS, Feldner A, Adam MG et al (2012) No evidence for a functional role of bi-directional notch signaling during angiogenesis. PLoS ONE 7:1–10. https://doi.org/10.1371/journal.pone.0053074

    Article  CAS  Google Scholar 

  31. Heusermann W, Hean J, Trojer D et al (2016) Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 213:173–184. https://doi.org/10.1083/jcb.201506084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gong J, Körner R, Gaitanos L, Klein R (2016) Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 214:35–44. https://doi.org/10.1083/jcb.201601085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruowen Ge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 9616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, E., Asada, H.H. & Ge, R. Extracellular vesicle-carried Jagged-1 inhibits HUVEC sprouting in a 3D microenvironment. Angiogenesis 21, 571–580 (2018). https://doi.org/10.1007/s10456-018-9609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9609-6

Keywords

Navigation