Skip to main content

Advertisement

Log in

Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1)

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to examine the vascular protective effects of candesartan, an angiotensin receptor blocker, in an ischemic retinopathy mouse model. Vascular density, number of tip cells, and perfusions of capillaries were assessed. Activation of Muller glial cells and levels of peroxynitrite, VEGF, VEGFR2, inducible nitric oxide synthase, hemeoxygenase-1 (HO-1) were assessed. Proangiogenic effects of candesartan were examined in human endothelial cells (EC) that were cultured in normoxia or hypoxia and transduced with siRNA against HO-1. Candesartan (1 mg/kg) and (10 mg/kg) decreased hypoxia-induced neovascularization by 67 and 70 %, respectively. Candesartan (10 mg/kg) significantly stimulated the number of tip cells and physiological revascularization of the central retina (45 %) compared with untreated pups. The effects of candesartan coincided with reduction of hypoxia-induced Muller glial activation, iNOS expression and restoration of HO-1 expression with no significant change in VEGF levels. In vitro, silencing HO-1 expression blunted the ability of candesartan to induce VEGF expression under normoxia and VEGFR2 activation and angiogenic response under both normoxia and hypoxia. These findings suggest that candesartan improved reparative angiogenesis and hence prevented pathological angiogenesis by modulating HO-1 and iNOS levels in ischemic retinopathy. HO-1 is required for VEGFR2 activation and proangiogenic action of candesartan in EC. Candesartan, an FDA-approved drug, could be repurposed as a potential therapeutic agent for the treatment of ischemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

VEGF:

Vascular endothelial growth factor

p:

Postnatal day

Cand:

Candesartan

ROP:

Retinopathy of prematurity

DR:

Diabetic retinopathy

iNOS:

Inducible nitric oxide synthase

HO-1:

Hemeoxygenase-1

References

  1. El-Kenawi AE, El-Remessy AB (2013) Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol 170:712–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sapieha P (2012) Eyeing central neurons in vascular growth and reparative angiogenesis. Blood 120:2182–2194

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140

    Article  PubMed  Google Scholar 

  4. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  5. Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL (2010) The renin-angiotensin system in retinal health and disease: its influence on neurons, glia and the vasculature. Prog Retin Eye Res 29:284–311

    Article  CAS  PubMed  Google Scholar 

  6. Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1401:187–194

    Article  CAS  PubMed  Google Scholar 

  7. Alhusban A, Kozak A, Ergul A, Fagan SC (2013) AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol Exp Ther 344:348–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Willis LM, El-Remessy AB, Somanath PR, Deremer DL, Fagan SC (2011) Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clin Sci (Lond) 120:307–319

    Article  CAS  Google Scholar 

  9. Kozak A, Ergul A, El-Remessy AB, Johnson MH, Machado LS et al (2009) Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke 40:1870–1876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Guan W, Somanath PR, Kozak A, Goc A, El-Remessy AB et al (2011) Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS One 6:e24551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Soliman SA, Ishrat T, Pillai A, Somanath PR, Ergul A et al (2014) candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of vascular endothelial growth factors A and B. J Pharmacol Exp Ther 349:444–457

    Article  CAS  PubMed  Google Scholar 

  12. Sano H, Hosokawa K, Kidoya H, Takakura N (2006) Negative regulation of VEGF-induced vascular leakage by blockade of angiotensin II type 1 receptor. Arterioscler Thromb Vasc Biol 26:2673–2680

    Article  CAS  PubMed  Google Scholar 

  13. Nagisa Y, Shintani A, Nakagawa S (2001) The angiotensin II receptor antagonist candesartan cilexetil (TCV-116) ameliorates retinal disorders in rats. Diabetologia 44:883–888

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura S, Tsuruma K, Shimazawa M, Hara H (2012) Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression. Eur J Pharmacol 685:8–14

    Article  CAS  PubMed  Google Scholar 

  15. Sennlaub F, Courtois Y, Goureau O (2001) Inducible nitric oxide synthase mediates the change from retinal to vitreal neovascularization in ischemic retinopathy. J Clin Invest 107:717–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sennlaub F, Courtois Y, Goureau O (2002) Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy. J Neurosci 22:3987–3993

    CAS  PubMed  Google Scholar 

  17. Gu W, Weihrauch D, Tanaka K, Tessmer JP, Pagel PS et al (2003) Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol Heart Circ Physiol 285:H1582–H1589

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Zhang J, Guan Y, Zhang S, Zhu C et al (2009) Suppression of retinal neovascularization by the iNOS inhibitor aminoguanidine in mice of oxygen-induced retinopathy. Graefes Arch Clin Exp Ophthalmol 247:919–927

    Article  CAS  PubMed  Google Scholar 

  19. Du AJ, Ren B, Gao XW, Yang L, Fu Y et al (2013) Effects of aminoguanidine on retinal apoptosis in mice with oxygen-induced retinopathy. Int J Ophthalmol 6:436–441

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Xu Z, Gong J, Maiti D, Vong L, Wu L et al (2012) MEF2C ablation in endothelial cells reduces retinal vessel loss and suppresses pathologic retinal neovascularization in oxygen-induced retinopathy. Am J Pathol 180:2548–2560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhang W, Zhang X, Lu H, Matsukura M, Zhao J et al (2013) Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells. Biochem Biophys Res Commun 434:492–497

    Article  CAS  PubMed  Google Scholar 

  22. Abdelsaid MA, Pillai BA, Matragoon S, Prakash R, Al-Shabrawey M et al (2010) Early intervention of tyrosine nitration prevents vaso-obliteration and neovascularization in ischemic retinopathy. J Pharmacol Exp Ther 332:125–134

    Article  CAS  PubMed  Google Scholar 

  23. Abdelsaid MA, Matragoon S, El-Remessy AB (2013) Thioredoxin-interacting protein expression is required for VEGF-mediated angiogenic signal in endothelial cells. Antioxid Redox Signal 19:2199–2212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wei Y, Gong J, Thimmulappa RK, Kosmider B, Biswal S et al (2013) Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc Natl Acad Sci USA 110:E3910–E3918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. El-Remessy AB, Behzadian MA, Abou-Mohamed G, Franklin T, Caldwell RW et al (2003) Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am J Pathol 162:1995–2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Grochot-Przeczek A, Dulak J, Jozkowicz A (2010) Heme oxygenase-1 in neovascularisation: a diabetic perspective. Thromb Haemost 104:424–431

    Article  CAS  PubMed  Google Scholar 

  27. Liu XQ, Wu BJ, Pan WH, Zhang XM, Liu JH et al (2013) Resveratrol mitigates rat retinal ischemic injury: the roles of matrix metalloproteinase-9, inducible nitric oxide, and heme oxygenase-1. J Ocul Pharmacol Ther 29:33–40

    Article  PubMed Central  PubMed  Google Scholar 

  28. Peng PH, Chao HM, Juan SH, Chen CF, Liu JH et al (2011) Pharmacological preconditioning by low dose cobalt protoporphyrin induces heme oxygenase-1 overexpression and alleviates retinal ischemia-reperfusion injury in rats. Curr Eye Res 36:238–246

    Article  CAS  PubMed  Google Scholar 

  29. Fan J, Xu G, Jiang T, Qin Y (2012) Pharmacologic induction of heme oxygenase-1 plays a protective role in diabetic retinopathy in rats. Invest Ophthalmol Vis Sci 53:6541–6556

    Article  CAS  PubMed  Google Scholar 

  30. Bussolati B, Mason JC (2006) Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis. Antioxid Redox Signal 8:1153–1163

    Article  CAS  PubMed  Google Scholar 

  31. Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO et al (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8:e64372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rosales MA, Silva KC, Duarte DA, de Oliveira MG, de Souza GF et al (2014) S-nitrosoglutathione inhibits inducible nitric oxide synthase upregulation by redox posttranslational modification in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci 55:2921–2932

    Article  CAS  PubMed  Google Scholar 

  33. Papp A, Nemeth I, Karg E, Papp E (1999) Glutathione status in retinopathy of prematurity. Free Radic Biol Med 27:738–743

    Article  CAS  PubMed  Google Scholar 

  34. Gu X, El-Remessy AB, Brooks SE, Al-Shabrawey M, Tsai NT et al (2003) Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. Am J Physiol Cell Physiol 285:C546–C554

    Article  CAS  PubMed  Google Scholar 

  35. Brooks SE, Gu X, Samuel S, Marcus DM, Bartoli M et al (2001) Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci 42:222–228

    CAS  PubMed  Google Scholar 

  36. El-Remessy AB, Al-Shabrawey M, Platt DH, Bartoli M, Behzadian MA et al (2007) Peroxynitrite mediates VEGF’s angiogenic signal and function via a nitration-independent mechanism in endothelial cells. FASEB J 21:2528–2539

    Article  CAS  PubMed  Google Scholar 

  37. Stevenson L, Matesanz N, Colhoun L, Edgar K, Devine A et al (2010) Reduced nitro-oxidative stress and neural cell death suggests a protective role for microglial cells in TNFalpha−/− mice in ischemic retinopathy. Invest Ophthalmol Vis Sci 51:3291–3299

    Article  PubMed Central  PubMed  Google Scholar 

  38. DeNiro M, Al-Halafi A, Al-Mohanna FH, Alsmadi O, Al-Mohanna FA (2010) Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy. Mol Pharmacol 77:348–367

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura H, Yamazaki M, Ohyama T, Inoue T, Arakawa N et al (2009) Role of angiotensin II type 1 receptor on retinal vascular leakage in a rat oxygen-induced retinopathy model. Ophthalmic Res 41:210–215

    Article  CAS  PubMed  Google Scholar 

  40. Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF et al (2000) Retinal neovascularization is prevented by blockade of the renin–angiotensin system. Hypertension 36:1099–1104

    Article  CAS  PubMed  Google Scholar 

  41. Nagai N, Noda K, Urano T, Kubota Y, Shinoda H et al (2005) Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci 46:1078–1084

    Article  PubMed  Google Scholar 

  42. Gemici B, Tan R, Ongut G, Izgut-Uysal VN (2010) Expressions of inducible nitric oxide synthase and cyclooxygenase-2 in gastric ischemia-reperfusion: role of angiotensin II. J Surg Res 161:126–133

    Article  CAS  PubMed  Google Scholar 

  43. Palaniyappan A, Uwiera RR, Idikio H, Menon V, Jugdutt C et al (2013) Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction. Mol Cell Biochem 376:175–188

    Article  CAS  PubMed  Google Scholar 

  44. Fan Q, Liao J, Kobayashi M, Yamashita M, Gu L et al (2004) Candesartan reduced advanced glycation end-products accumulation and diminished nitro-oxidative stress in type 2 diabetic KK/Ta mice. Nephrol Dial Transplant 19:3012–3020

    Article  CAS  PubMed  Google Scholar 

  45. Fletcher EL, Downie LE, Hatzopoulos K, Vessey KA, Ward MM et al (2010) The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Doc Ophthalmol 120:67–86

    Article  PubMed  Google Scholar 

  46. Kurihara T, Ozawa Y, Shinoda K, Nagai N, Inoue M et al (2006) Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation. Invest Ophthalmol Vis Sci 47:5545–5552

    Article  PubMed  Google Scholar 

  47. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2008) AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia 56:1076–1090

    Article  PubMed  Google Scholar 

  48. Palmer LA, Semenza GL, Stoler MH, Johns RA (1998) Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 274:L212–L219

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Astra-Zeneca for providing candesartan. Authors are indebted to Megan L. Bartasis for providing help with Western blot. This work was supported by grants from EY-022408, JDRF (2-2008-149) and Culver Vision Discovery Institute to ABE, postdoctoral Fellowship from Islamic Development Bank to M.F.E., predoctoral fellowship (12PRE12030197) from American Heart Association for S.S., VA Merit award (BX000891) to S.C.F.

Conflict of interest

The authors have nothing to disclose. The contents do not represent the views of the Department of Veterans Affairs or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azza B. El-Remessy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (PPTX 3223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanab, A.Y., Elshaer, S.L., El-Azab, M.F. et al. Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1). Angiogenesis 18, 137–150 (2015). https://doi.org/10.1007/s10456-014-9451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9451-4

Keywords

Navigation