Skip to main content
Log in

On vector bundle manifolds with spherically symmetric metrics

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give a general description of the construction of weighted spherically symmetric metrics on vector bundle manifolds, i.e. the total space of a vector bundle \(E\longrightarrow M\), over a Riemannian manifold M, when E is endowed with a metric connection. The tangent bundle of E admits a canonical decomposition and thus it is possible to define an interesting class of two-weights metrics with the weight functions depending on the fibre norm of E; hence the generalized concept of spherically symmetric metrics. We study its main properties and curvature equations. Finally we focus on a few applications and compute the holonomy of Bryant–Salamon type \({\mathrm {G}_{2}}\) manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These interactions are important, specially for the above problem when we think of the pseudo-Riemannian case. However, even for this situation, for the weighted Sasaki pseudo-Riemannian structures, defined by obvious sign change in (6), we believe the metric completeness of the base manifold is still the sufficient condition, with the same arguments as above.

  2. Indeed, after reading both articles, the present author does not find the significant reason for this attribution and he seems not to be the only; in [20] the choice is referred as a matter of inspiration.

  3. We remark that the structures of generalized Sasaki type with weight functions dependent of the base point \(x\in M\), rather than the squared-radius r, have been studied by the author in [5].

  4. One may say the close relations between metric and complex structures start with the twist \(\varphi _1,\varphi _2\mapsto \psi ,\overline{\psi }\).

  5. Everywhere possible, we omit the ± which is attached to each 2-form and vector bundle.

  6. The \(e^i,\ i=1,2,3\), have norm 2 for the usual metric on 2-forms, but indeed it is \(\frac{1}{2}\) of this that is used in [7]. In particular, the notation here for r refers to the half squared-radius r mentioned there.

References

  1. Abbassi, M.T.K.: Note on the classification theorems of \(g\)-natural metrics on the tangent bundle of a Riemannian manifold \((M, g)\). Comment. Math. Univ. Carolinae 45(4), 591–596 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Abbassi, M.T.K., Calvaruso, G.: \(g\)-natural contact metrics on unit tangent sphere bundles. Monatshefte für Math. 151, 89–109 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds, Archivum Mathematicum (Brno). Tomus 41, 71–92 (2005)

    MATH  Google Scholar 

  4. Albuquerque, R.: Hermitian and quaternionic Hermitian structures on tangent bundles. Geometriae Dedicata 133(1), 95–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Albuquerque, R.: Weighted metrics on tangent sphere bundles. Q. J. Math. 63(2), 259–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Albuquerque, R.: Homotheties and topology of tangent sphere bundles. J. Geom. 105(2), 327–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Albuquerque, R.: Self-duality and associated parallel or cocalibrated \({\text{G}}_{2}\) structures. http://arxiv.org/abs/1401.7314

  8. Albuquerque, R.: An invariant Kähler metric on the tangent disk bundle of a space-form. http://arxiv.org/abs/1609.03125

  9. Belegradek, I., Wei, G.: Metrics of positive Ricci curvature on vector bundles over nimanifolds. Geom. Funct. Anal. 12(7), 56–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benyounes, M., Loubeau, E., Wood, C.M.: Harmonic sections of Riemannian bundles and metrics of Cheeger–Gromoll type. Differ. Geom. Appl. 25, 322–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benyounes, M., Loubeau, E., Wood, C.M.: The geometry of generalized Cheeger–Gromoll metrics. Tokyo J. Math. 32, 287–312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bérard Bergery, L.: Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive. C. R. Acad. Sci. Paris Sér. I Math. 302(4), 159–161 (1986). http://gallica.bnf.fr/ark:/12148/bpt6k5744719j/f26.image

  13. Berndt, J., Boeckx, E., Nagy, P., Vanhecke, L.: Geodesics on the unit tangent bundle. Proc. R. Soc. Edinburgh Sect. A 133, 1209–1229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  15. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. (2) 126(3), 525–576 (1987)

  16. Bryant, R.L., Salamon, S.: On the construction of some complete metrics with exceptional holonomy. Duke Math. J. 58(3), 829–850 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96, 413–443 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gibbons, G.W., Page, D.N., Pope, C.N.: Einstein metrics on \(S^3,\;{{{\mathbb{R}}}}^3\) and \({{{\mathbb{R}}}}^4\) bundles. Commun. Math. Phys. 127(3), 529–553 (1990)

    Article  MATH  Google Scholar 

  19. Joyce, D.: Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford (2009)

    Google Scholar 

  20. Kazimova, S., Salimov, A.A.: Geodesics of the Cheeger–Gromoll metric. Turk. J. Math. 33, 99–105 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Kobayashi, S.: Differential Geometry of Complex Vector Bundles, Kanô Memorial Lectures 5. Publishers and Princeton University Press, Iwanami Shoten (1987)

    Google Scholar 

  22. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1, 2. Wiley Classics Library (1996)

  23. Kowalski, O.: Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold. J. Reine Angew. Math. 250, 124–129 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Kozlowski, W., Niedzialomski, K.: Differential as a harmonic morphism with respect to Cheeger–Gromoll-type metrics. Ann. Global Anal. Geom. 37, 327–337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Brian, N., Rawnsley, J.: Twistor spaces. Ann. Global Anal. Geom. 3(1), 29–58 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Munteanu, M.I.: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a riemannian manifold. Mediter. J. Math. 5, 43–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murad, Ö., Walschap, G.: Vector bundles with no soul. Proc. Am. Math. Soc. 120(2), 565–567 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles. Annali Mate. Pura ed Appl. 150(4), 1–20 (1988)

  29. Sekizawa, M.: Curvatures of tangent bundles with Cheeger–Gromoll metric. Tokyo J. Math. 14, 407–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tahara, M., Vanhecke, L., Watanabe, Y.: New structures on tangent bundles. Note Mat. 18(1), 131–141 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Tapp, K.: Conditions for nonnegative curvature on vector bundles and sphere bundles. Duke Math. J. 116(1), 77–101 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Albuquerque.

Additional information

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement No. PIEF-GA-2012-332209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, R. On vector bundle manifolds with spherically symmetric metrics. Ann Glob Anal Geom 51, 129–154 (2017). https://doi.org/10.1007/s10455-016-9528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9528-y

Keywords

Mathematics Subject Classification

Navigation