Skip to main content
Log in

Airborne fungal spore concentration in an industrial township: distribution and relation with meteorological parameters

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Bioaerosols are reported to affect human health and cause chronic inflammation to the respiratory system, leading to its temporary or permanent damage. This study aims to perform the qualitative assessment of ambient air of Barrackpore, an industrial township of West Bengal, India, by analysing the airborne fungal spore diversity for two consecutive years. The spores of ambient air were trapped using Burkard 7-day volumetric sampler from June 2014 to May 2016. The association of major fungal taxa with environmental parameters was analysed by Spearman’s rank correlation coefficient and multiple regression analysis to identify the significant predictors. The daily average ambient fungal spore concentration was 3526.38 ± 2709.32 spores m−3. Ascospore, basidiospore, Periconia and Aspergillus/Penicillium spp. accounted for more than 65% of observed fungi, resulting in the major fungal taxa. A significant association of dominant fungi with meteorological parameters and air pollutants was observed. Additionally, stepwise multiple regression analysis pointed out that dewpoint, wind speed, particulate matter with an aerodynamic diameter ≤ 2.5(PM2.5) and atmospheric nitrogen dioxide concentration (NO2) are the significant predictors for dominant fungi. Analysis of daily ambient fungal spore concentration and determining their environmental determinants will give an insight into the ambient air quality of the residential area of Barrackpore, for the first time. The acquired data can be used to evaluate the health impact on the residents of an unevaluated industrial township of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  • Adhikari, A., Reponen, T., Grinshpun, S. A., Martuzevicius, D., & LeMasters, G. (2006). Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environmental Pollution, 140(1), 16–28.

    CAS  Google Scholar 

  • Aira, M. J., Rajo, F. J., Fernández-González, M., Carmen, S. C., Elvira-Rendueles, B., Abreu, I., et al. (2012). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology, 57(2), 265–274.

    Google Scholar 

  • Alghamdi, M., Shamy, M., Redal, M., Khoder, M., Awad, A., & Elserougy, S. (2014). Microorganisms associated particulate matter: A preliminary study. Science of The Total Environment, 479–480, 109–116.

    Google Scholar 

  • Barui, N. C., & Chanda, S. (2000). Aeromycoflora in the Central Milk Dairy of Calcutta, India. Aerobiologia, 16, 367–372.

    Google Scholar 

  • British Aerobiology Federation. (1995). Airborne pollens and spores. A guide to trapping and counting. Worcester: British Aerobiology Federation.

    Google Scholar 

  • Chakrabarti, H. S., Das, S., & Gupta-Bhattacharya, S. (2012). Outdoor airborne fungal spora load in a suburb of Kolkata, India: Its variation, meteorological determinants and health impact. International Journal of Environmental Health Research, 22(1), 37–50.

    CAS  Google Scholar 

  • Chakraborty, P., Gupta-Bhattacharya, S., & Chanda, S. (2003). Aeromycoflora of an agricultural farm in West Bengal, India: A five-year study (1994–1999). Grana, 42(4), 248–254.

    Google Scholar 

  • Chao, H. J., Chan, C.-C., Rao, C. Y., Lee, C.-T., Chuang, Y.-C., Chiu, Y.-H., et al. (2012). The effects of transported Asian dust on the composition and concentration of ambient fungi in Taiwan. International Journal of Biometeorology, 56(2), 211–219.

    Google Scholar 

  • Chen, B.-Y., Jasmine Chao, H., Wu, C.-F., Kim, H., Honda, Y., & Guo, Y. L. (2014). High ambient Cladosporium spores were associated with reduced lung function in schoolchildren in a longitudinal study. Science of The Total Environment, 481, 370–376.

    CAS  Google Scholar 

  • Das, S., & Gupta-Bhattacharya, S. (2008). Enumerating outdoor aeromycota in suburban West Bengal, India, with reference to respiratory allergy and meteorological factors. Annals of Agricultural and Environmental Medicine, 15(1), 105–112.

    Google Scholar 

  • Das, S., & Gupta-Bhattacharya, S. (2012). Monitoring and assessment of airborne fungi in Kolkata, India, by viable and non-viable air sampling methods. Environmental Monitoring and Assessment, 184(8), 4671–4684.

    CAS  Google Scholar 

  • Denning, D. W., O'Driscoll, B. R., Hogaboam, C. M., Bowyer, P., & Niven, R. M. (2006). The link between fungi and severe asthma: A summary of the evidence. European Respiratory Journal, 27(3), 615–626.

    CAS  Google Scholar 

  • Dey, D., Ghosal, K., & Bhattacharya, S. G. (2019). Aerial fungal spectrum of Kolkata, India, along with their allergenic impact on the public health: A quantitative and qualitative evaluation. Aerobiologia, 35, 15–25.

    Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous hyphomycetes. Surrey: Commonwealth Mycological Institute.

    Google Scholar 

  • Elminir, H. K. (2005). Dependence of urban air pollutants on meteorology. Science of the Total Environment, 350, 225–237.

    CAS  Google Scholar 

  • Fang, Z., Guo, W., Zhang, J., & Lou, X. (2019). Assemblages of culturable airborne fungi in a typical urban, tourism-driven center of Southeast China. Aerosol and Air Quality Research, 19(4), 820–831.

    CAS  Google Scholar 

  • Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Manzano, J., Silva-Palacios, I., & Gonzalo-Garijo, Á. (2014). Outdoor airborne fungi captured by viable and non-viable methods. Fungal Ecology, 7, 16–26.

    Google Scholar 

  • Filali Ben Sidel, F., Bouziane, H., Kadiri, M., El haskouri, F., & del Mar trigo, M. (2017). Fungal spores of Cladosporium in the air of tetouan meteorological parameters and forecast models. International Journal of Environmental Sciences & Natural Resources, 3(2), 43–50.

    Google Scholar 

  • Garaga, R., Avinash, C. K. R., & Kota, S. H. (2019). Seasonal variation of airborne allergenic fungal spores in ambient PM10—A study in Guwahati, the largest city of north-east India. Air Quality, Atmosphere & Health, 12(1), 11–20.

    CAS  Google Scholar 

  • GBD MAPS Working Group. (2018). Burden of disease attributable to major air pollution sources in India. Special Report 21. Boston, MA: Health Effects Institute. Retrieved November 26, 2019, from https://www.healtheffects.org/system/files/GBD-MAPS-SpecRep21-India-revised_0.pdf. Posted in January 2018.

  • Gioulekas, D., Damialis, A., Balafoutis, C., Papakosta, D., Giouleka, P., & Patakas, D. (2004). Allergenic fungal spore records (15 Years) and relationship with meteorological parameters in Thessaloniki, Greece. Allergy & Clinical Immunology International—Journal of the World Allergy Organization, 16(2), 52–59.

    Google Scholar 

  • Grinn-Gofroń, A. (2011). Airborne Aspergillus and Penicillium in the atmosphere of Szczecin, (Poland) (2004–2009). Aerobiologia, 27(1), 67–76.

    Google Scholar 

  • Grinn-Gofroń, A., & Bosiacka, B. (2015). Effects of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia, 31(1), 63–72.

    Google Scholar 

  • Grinn-Gofroń, A., Bosiacka, B., Bednarz, A., & Wolski, T. (2018). A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia, 34(1), 45–54.

    Google Scholar 

  • Grinn-Gofroń, A., Strzelczak, A., & Wolski, T. (2011). The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environmental Pollution, 159(2), 602–608.

    Google Scholar 

  • Haas, D., Galler, H., Luxner, J., Zarfel, G., Buzina, W., Friedl, H., et al. (2013). The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmospheric Environment, 65, 215–222.

    CAS  Google Scholar 

  • Harley, K. G., Macher, J. M., Lipsett, M., Duramad, P., Holland, N. T., Prager, S. S., et al. (2009). Fungi and pollen exposure in the first months of life and risk of early childhood wheezing. Thorax, 64(4), 353–358.

    CAS  Google Scholar 

  • Hummel, M., Hoose, C., Gallagher, M., Healy, D. A., Huffman, J. A., O'Connor, D., et al. (2015). Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles. Atmospheric Chemistry and Physics, 15(11), 6127–6146.

    CAS  Google Scholar 

  • Ianovici, N. (2016). Atmospheric concentrations of selected allergenic fungal spores in relation to some meteorological factors, in Timisoara (Romania). Aerobiologia, 32(1), 139–156.

    Google Scholar 

  • Kallawicha, K., Chen, Y.-C., Chao, H., Shen, W.-C., Chen, B.-Y., Chuan, Y.-C., et al. (2017). Ambient fungal spore concentration in a subtropical metropolis: Temporal distributions and meteorological determinants. Aerosol and Air Quality Research, 17(8), 2051–2063.

    Google Scholar 

  • Kant, S. (2013). Socio-economic dynamics of asthma. Indian Journal of Medical Research, 138(4), 446–448.

    Google Scholar 

  • Korzun, W., Hall, J., & Sauer, R. (2008). The effect of ozone on common environmental fungi. Clinical Laboratory Science, 21(2), 107–111.

    Google Scholar 

  • Koul, P., & Patel, D. (2015). Indian guidelines for asthma: Adherence is the key. Lung India, 32(7), 1–2.

    Google Scholar 

  • Landau, S., & Everitt, B. S. (2003). A handbook of statistical analyses using SPSS. London: CRC Press Company.

    Google Scholar 

  • Li, D.-W., & Kendrick, B. (1995). A year-round study on functional relationships of airborne fungi with meteorological factors. International Journal of Biometeorology, 39(2), 74–80.

    CAS  Google Scholar 

  • Lighthart, B. (1973). Survival of airborne bacteria in a high urban concentration of carbon monoxide. Applied Microbiology, 25(1), 86–91.

    CAS  Google Scholar 

  • Liu, H., Hu, Z., Zhou, M., Hu, J., Yao, X., Zhang, H., et al. (2019). The distribution variance of airborne microorganisms in urban and rural environments. Environmental Pollution, 247, 898–906.

    CAS  Google Scholar 

  • Magyar, D., Frenguelli, G., Bricchi, E., Tedeschini, E., Csontos, P., Li, D.-W., et al. (2009). The biodiversity of air spora in an Italian vineyard. Aerobiologia, 25, 99–109.

    Google Scholar 

  • Mansfield, P. J., Bell, J. N. B., McLeod, A. R., & Wheeler, B. E. J. (1991). Effects of sulphur dioxide on the development of fungal diseases of winter barley in an open-air fumigation system. Agriculture, Ecosystems & Environment, 33(3), 215–232.

    CAS  Google Scholar 

  • Matthias-Maser, S., & Jaenicke, R. (2000). The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia, 16(2), 207–210.

    Google Scholar 

  • NAB. (2019). NAB Pollen Counts. Retrieved October 14, 2019, from https://www.aaaaiorg/global/nab-pollen-countsaspx.

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53(1), 61–73.

    CAS  Google Scholar 

  • Ponce-Caballero, C., Gamboa-Marrufo, M., López-Pacheco, M., Cerón-Palma, I., Quintal-Franco, C., Giácoman-Vallejos, G., et al. (2013). Seasonal variation of airborne fungal propagules indoor and outdoor of domestic environments in Mérida, Mexico. Atmósfera, 26(3), 369–377.

    CAS  Google Scholar 

  • Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., & Ruiz, C. R. (2001). Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 35(5), 845–858.

    CAS  Google Scholar 

  • Quintero, E., Rivera-Mariani, F., & Bolaños-Rosero, B. (2010). Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiologia, 26(2), 113–124.

    Google Scholar 

  • Rapilly, F. (1991). Épidémiologieenpathologievégétale. Mycoses aériennes. Versailles: Éditions Quae.

    Google Scholar 

  • Reinmuth-Selzle, K., Kampf, C. J., Lucas, K., Lang-Yona, N., Fröhlich-Nowoisky, J., Shiraiwa, M., et al. (2017). Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants. Environmental Science & Technology, 51(8), 4119–4141.

    CAS  Google Scholar 

  • Rieux, A., Soubeyrand, S., Bonnot, F., Klein, E. K., Ngando, J. E., Mehl, A., et al. (2014). Long-distance wind-dispersal of spores in a fungal plant pathogen: Estimation of anisotropic dispersal kernels from an extensive field experiment. PLoS ONE, 9(8), e103225–e103225.

    Google Scholar 

  • Roy, S., Chakraborty, A., Maitra, S., & Bhattacharya, K. (2017). Monitoring of airborne fungal spore load in relation to meteorological factors, air pollutants and allergic symptoms in Farakka, an unexplored bio-zone of eastern India. Environmental Monitoring and Assessment, 189(8), 370.

    Google Scholar 

  • Sadyś, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2016). Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia, 32(4), 619–634.

    Google Scholar 

  • Savi, G. D., & Scussel, V. M. (2014). Effects of ozone gas exposure on toxigenic fungi species from Fusarium, Aspergillus, and Penicillium genera. Ozone: Science & Engineering, 36(2), 144–152.

    CAS  Google Scholar 

  • Ščevková, J., Hrabovský, M., Kováč, J., & Rosa, S. (2019). Intradiurnal variation of predominant airborne fungal spore biopollutants in the Central European urban environment. Environmental Science and Pollution Research, 26(33), 34603–34612.

    Google Scholar 

  • Shukla, S., & Shukla, R. V. (2011). Air borne fungal spores in the atmosphere of industrial town Korba-Chhattisgarh, India. Microbiology Journal, 1(1), 33–39.

    Google Scholar 

  • Singh, A. B., & Dahiya, P. (2008). Aerobiological researches on pollen and fungi in India during the last fifty years: An overview. Indian Journal of Allergy and Asthma Immunology, 22(1), 27–38.

    Google Scholar 

  • Smith, G., Allsopp, D., Onions, A. H. S., & Eggins, H. O. W. (1981). Smith's introduction to industrial mycology (7th ed.). London: Edward Arnold.

    Google Scholar 

  • Sommer, N. F., Fortlage, R. J., Buchanan, J. R., & Kader, A. A. (1981). Effect of oxygen on carbon monoxide suppression of postharvest pathogens of fruits. Plant Disease, 65(4), 347–349.

    Google Scholar 

  • Sreeramulu, T. (1959). The diurnal and seasonal periodicity of spores of certain pathogens in the air. Transactions of the British Mycological Society, 42(2), 177–184.

    Google Scholar 

  • Stevens, J. (1996). Applied multivariate statistics for the social sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  • Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45(2), 64–74.

    CAS  Google Scholar 

  • Twaroch, T. E., Curin, M., Valenta, R., & Swoboda, I. (2015). Mold allergens in respiratory allergy: From structure to therapy. Allergy, Asthma & Immunology Research, 7(3), 205–220.

    CAS  Google Scholar 

  • Väkevä, M., Hämeri, K., Kulmala, M., Lahdes, R., Ruuskanen, J., & Laitinen, T. (1999). Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmospheric Environment, 33(9), 1385–1397.

    Google Scholar 

  • Viana, M., Querol, X., & Alastuey, A. (2006). Chemical characterisation of PM episodes in NE Spain. Chemosphere, 62(6), 947–956.

    CAS  Google Scholar 

  • Womiloju, T. O., Miller, J. D., Mayer, P. M., & Brook, J. R. (2003). Methods to determine the biological composition of particulate matter collected from outdoor air. Atmospheric Environment, 37(31), 4335–4344.

    CAS  Google Scholar 

  • Yan, D., Zhang, T., Su, J., Zhao, L.-L., Wang, H., Fang, X.-M., et al. (2016). Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Frontiers in Microbiology, 7, 487.

    Google Scholar 

  • Zhang, T., Engling, G., Chan, C.-Y., Zhang, Y.-N., Zhang, Z.-S., Lin, M., et al. (2010). Contribution of fungal spores to particulate matter in a tropical rainforest. Environmental Research Letters, 5(2), 024010.

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Department of Science and Technology, Government of India (Grant No. DST/INSPIRE Fellowship/2013/1103). The authors are thankful to the Director of the Bose Institute for providing the infrastructural facility. Sincere thanks to Chanchal Chakraborty, Soumyo Subhra Gupta, Jadab Kumar Ghosh, Kaberi Ghosh, Ashish Bera and all lab members for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Gupta Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 178 kb)

Supplementary file2 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Gupta Bhattacharya, S. Airborne fungal spore concentration in an industrial township: distribution and relation with meteorological parameters. Aerobiologia 36, 575–587 (2020). https://doi.org/10.1007/s10453-020-09653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09653-9

Keywords

Navigation