Skip to main content
Log in

Effect of the Mediterranean crops in the airborne pollen spectrum

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The impact of pollen grains as an allergenic factor is an important object of study. Various statistical analyses have been used to describe the behaviour of anemophilous plants, including certain Mediterranean cultivars (Olea europaea, Vitis vinifera, etc.). The main aims of this study are to define the pollen spectrum within an agricultural area and the effects of meteorological parameters and to examine whether Spearman’s correlation and ReDundancy Analysis (RDA) provide similar information. Aerobiological sampling was conducted using a Hirst-type volumetric spore trap from January 2015 to August 2018 in the Montilla mountains, in the south of the province of Córdoba, in an agricultural area close to a small city. In this location, the effect of ornamental plants is reduced and the cultivar effect becomes more important. Taking into account the average percentage for all years, the most abundant pollen types were Olea, Quercus, Poaceae, Urticaceae, Urtica membranacea, Vitis, Plantago, Pinus and Amaranthaceae. Due to the climatic characteristics of the study area, the meteorological parameters with most influence were temperature and dew point. The pollen spectrum in the study zone is caused by the agricultural use of the land, increasing the concentrations of some allergenic pollen types and decreasing the diversity of airborne pollen types. The RDA analysis gives a better explanation of the complex relationship between meteorological parameters and airborne pollen release and dispersion compared with the Spearman’s correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcázar, P., Galán, C., Cariñanos, P., & Domínguez-Vilches, E. (1999). Diurnal variation of airborne pollen at two different heights. Journal of Investigational Allergology and Clinical Immunology,9, 89–95.

    Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000.

  • Braak, C. J. F. T. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology,67, 1167–1179. https://doi.org/10.2307/1938672.

    Article  Google Scholar 

  • Cariñanos, P., Alcázar, P., Galán, C., & Domínguez, E. (2014). Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Science of the Total Environment,470, 480–487.

    Article  Google Scholar 

  • Cariñanos, P., & Casares-Porcel, M. (2011). Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning,101, 205–214.

    Article  Google Scholar 

  • Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2000). Aerobiología en Andalucía: estación de Córdoba (1999). Rea,6, 19–22.

    Google Scholar 

  • Cebrino, J., Galán, C., & Domínguez-Vilches, E. (2016). Aerobiological and phenological study of the main Poaceae species in Córdoba City (Spain) and the surrounding hills. Aerobiologia,32, 595–606.

    Article  Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy,62, 976–990.

    Article  Google Scholar 

  • Fernández-González, M., Rodríguez-Rajo, F. J., Escuredo, O., & Aira, M. J. (2013). Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia,29, 523–535. https://doi.org/10.1007/s10453-013-9302-6.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Durán-Barroso, P., Silva-Palacios, I., et al. (2018). Environmental assessment of allergenic risk provoked by airborne grass pollen through forecast model in a Mediterranean region. Journal of Cleaner Production,176, 1304–1315.

    Article  Google Scholar 

  • Galán, C., Alcázar, P., Cariñanos, P., et al. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology,43, 191–195.

    Article  Google Scholar 

  • Galán C, González PC, Teno PA, Vilches ED (2007) Spanish Aerobiology Network (REA): Management and quality manual.

  • Galán, C., Smith, M., Thibaudon, M., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,30, 385–395. https://doi.org/10.1007/s10453-014-9335-5.

    Article  Google Scholar 

  • Galán, C., Tormo, R., Cuevas, J., et al. (1991). Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana,30, 201–209.

    Article  Google Scholar 

  • Galera, M., Elvira-Rendueles, B., Moreno, J., et al. (2018). Analysis of airborne Olea pollen in Cartagena (Spain). Science of the Total Environment,622, 436–445.

    Article  Google Scholar 

  • Garcia-Mozo, H., Dominguez-Vilches, E., & Galan, C. (2007). Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain. Annals of Agricultural and Environmental Medicine,14, 63.

    Google Scholar 

  • Grinn-Gofroń, A., Bosiacka, B., Bednarz, A., & Wolski, T. (2018). A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia,34, 45–54.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An Automatic Volumetric Spore Trap. Annals of Applied Biology,39, 257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x.

    Article  Google Scholar 

  • Kruczek, A., Puc, M., & Wolski, T. (2017). Airborne pollen from allergenic herbaceous plants in urban and rural areas of Western Pomerania, NW Poland. Grana,56, 71–80.

    Article  Google Scholar 

  • Li, Y., Ge, Y., Xu, Q., et al. (2015). Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China. Atmospheric Environment,106, 92–99.

    Article  CAS  Google Scholar 

  • Majeed, H. T., Periago, C., Alarcón, M., & Belmonte, J. (2018). Airborne pollen parameters and their relationship with meteorological variables in NE Iberian Peninsula. Aerobiologia,34, 375–388.

    Article  Google Scholar 

  • Martínez-Bracero, M., Alcázar, P., de la Guardia, C. D., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia,31, 549–557. https://doi.org/10.1007/s10453-015-9385-3.

    Article  Google Scholar 

  • Martínez-Bracero, M., Alcázar, P., Velasco-Jiménez, M. J., et al. (2018). Phenological and aerobiological study of vineyards in the Montilla-Moriles PDO area, Cordoba, southern Spain. The Journal of Agricultural Science. https://doi.org/10.1017/S0021859618000783.

    Article  Google Scholar 

  • Maya-Manzano, J. M., Fernández-Rodríguez, S., Smith, M., et al. (2016). Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas. Science of the Total Environment,571, 1037–1047.

    Article  CAS  Google Scholar 

  • Maya-Manzano, J., Sadyś, M., Tormo-Molina, R., et al. (2017). Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of the Total Environment,584, 603–613.

    Article  Google Scholar 

  • Oduber, F., Calvo, A., Blanco-Alegre, C., et al. (2019). Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants. Agricultural and Forest Meteorology,264, 16–26.

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, et al (2019) Package ‘vegan’.

  • Oteros, J., García-Mozo, H., Alcázar, P., et al. (2015). A new method for determining the sources of airborne particles. Journal of Environmental Management,155, 212–218.

    Article  CAS  Google Scholar 

  • Qin, F., Wang, Y.-F., Ferguson, D. K., et al. (2015). Utility of surface pollen assemblages to delimit eastern Eurasian steppe types. PLoS ONE,10, e0119412.

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/.

  • Recio, M., Picornell, A., Trigo, M., et al. (2018). Intensity and temporality of airborne Quercus pollen in the southwest Mediterranean area: Correlation with meteorological and phenoclimatic variables, trends and possible adaptation to climate change. Agricultural and Forest Meteorology,250, 308–318.

    Article  Google Scholar 

  • Ribeiro, H., Abreu, I., & Cunha, M. (2017). Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically. Aerobiologia,33, 473–480.

    Article  Google Scholar 

  • Ribeiro, H., Cunha, M., & Abreu, I. (2003). Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia,19, 21–27.

    Article  Google Scholar 

  • Rojo, J., Rapp, A., Lara, B., et al. (2016). Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environmental Monitoring and Assessment,188, 130.

    Article  Google Scholar 

  • Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology,59, 25–36. https://doi.org/10.1007/s00484-014-0818-4.

    Article  Google Scholar 

  • Tassan-Mazzocco, F., Felluga, A., & Verardo, P. (2015). Prediction of wind-carried Gramineae and Urticaceae pollen occurrence in the Friuli Venezia Giulia region (Italy). Aerobiologia,31, 559–574.

    Article  Google Scholar 

  • Vázquez, L., Galán, C., & Domínguez-Vilches, E. (2003). Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). International Journal of Biometeorology,48, 83–90.

    Article  Google Scholar 

  • Vega-Maray, A. M., Valencia-Barrera, R. M., Fernandez-Gonzalez, D., & Fraile, R. (2003). Urticaceae pollen concentration in the atmosphere of north-western spain. Annals of Agricultural and Environmental Medicine,10, 249–256.

    Google Scholar 

  • Velasco-Jiménez, M., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia,29, 113–120.

    Article  Google Scholar 

  • Velasco-Jiménez, M. J., Alcázar, P., Valenzuela, L. R., et al. (2017). Pinus pollen season trend in South Spain. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. https://doi.org/10.1080/11263504.2017.1311962.

    Article  Google Scholar 

  • Velasco-Jiménez, M., Alcázar, P., Valle, A., et al. (2014). Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia,30, 91–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Martínez-Bracero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Bracero, M., Alcázar, P., Velasco-Jiménez, M.J. et al. Effect of the Mediterranean crops in the airborne pollen spectrum. Aerobiologia 35, 647–657 (2019). https://doi.org/10.1007/s10453-019-09604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-019-09604-z

Keywords

Navigation