Skip to main content
Log in

Poaceae pollen season and associations with meteorological parameters in Moscow, Russia, 1994–2016

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study aimed at investigating the main features of the Poaceae pollen season and the relation to meteorological parameters as well as the production of a forecasting model. Pollen data were recorded in Moscow, Russia, during 1994–2016 (except 1997 and 1998). Pollen data were collected by volumetric spore trap. Correlation analysis was used to study relationships between various parameters of pollen seasons. Simple linear regression analysis was conducted to investigate trends over time; multiple stepwise regression analysis was used to describe fluctuations in the start date and in seasonal pollen integral (SPIn) as a function of monthly and cumulative climatic parameters. The forecasting model for the start date predicts 72% variability. The mean temperature in April and May and mean humidity in May are the main variables for forecasting the start of the Poaceae pollen season. The SPIn cannot be predicted with pre-seasonal temperature, humidity or rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aboulaich, N., Bouziane, H., Kadiri, M., del Mar Trigo, M., Riadi, H., Kazzaz, M., et al. (2009). Pollen production in anemophilous species of the Poaceae family in Tetouan (NW Morocco). Aerobiologia, 25, 27–38.

    Article  Google Scholar 

  • Ado, A. D. (1978). Pollen allergens. In A. D. Ado (Ed.), General allergology (pp. 101–104). Moscow: Meditsina (in Russian).

  • Antépara, I., Fernández, J. C., Gamboa, P., Jauregui, I., & Miguel, F. (1995). Pollen allergy in the Bilbao area (European Atlantic seaboard climate): Pollination forecasting methods. Clinical and Experimental Allergy, 25, 133–140.

    Article  Google Scholar 

  • Cebrino, J., Galán, C., & Domínguez-Vilches, E. (2016). Aerobiological and phenological study of the main Poaceae species in Córdoba City (Spain) and the surrounding hills. Aerobiologia, 32, 595–606.

    Article  Google Scholar 

  • Chłopek, K. (2007). Grass pollen (Poaceae) in the air of Sosnowiec (Poland), 1997–2006. Acta Agrobotanica, 60, 79–86.

    Article  Google Scholar 

  • Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19, 227–234.

    Article  Google Scholar 

  • Dabrowska, A. (2009). An analysis of grass (Poaceae) pollen seasons in Lublin in 2001–2008. Acta Agrobotanica, 62, 91–96.

    Article  Google Scholar 

  • Dahl, Å., Galan, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., et al. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen. A review of the production, release, distribution and health impacts (pp. 29–70). Dordrecht, Heidelberg, New York, London: Springer.

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.

    Article  CAS  Google Scholar 

  • Detandt, M., & Nolard, N. (2000). The fluctuations of the allergenic pollen content of the air in Brussels (1982 to 1997). Aerobiologia, 16, 55–61.

    Article  Google Scholar 

  • Egorova, V. N. (1976). Dactylis glomerata. In T. A. Rabotnov (Ed.), Biological flora of Moscow region (pp. 76–89). Moscow: MSU. (in Russian).

    Google Scholar 

  • Egorova, V. N. (1996). Poa pratensis. In V. N. Pavlov & V. N. Tikhomirov (Eds.), Biological flora of Moscow region (pp. 22–38). Moscow: Argus. (in Russian).

    Google Scholar 

  • Emberlin, J. (2008). Grass, tree, and weed pollen. In A. B. Kay, A. P. Kaplan, J. Bousquet, & P. G. Holt (Eds.), Allergy and allergic diseases. Oxford, UK: Wiley-Blackwell.

    Google Scholar 

  • Emberlin, J., Jaeger, S., Dominguez-Vilches, E., Soldevilla, C. G., Hodal, L., Mandrioli, P., et al. (2000). Temporal and georaphical variations in grass pollen seasons in areas of western Europe: An analysis of season dates at sites of the European pollen information system. Aerobiologia, 16, 373–379.

    Article  Google Scholar 

  • Emberlin, J., Jones, S., Bailey, J., Caulton, E., Corden, J., Dubbels, S., et al. (1994). Variation in the start of the grass pollen season at selected sites in the united kingdom 1987–1992. Grana, 33, 94–99.

    Article  Google Scholar 

  • Emberlin, M., Mullins, J., Corden, J., Jones, S., Millington, W., Brooke, M., et al. (1999). Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clinical and Experimental Allergy, 29, 347–356.

    Article  CAS  Google Scholar 

  • Emberlin, J., Savage, M., & Jones, S. (1993). Annual variations in grass pollen seasons in London 1961–1990: Trends and forecast models. Clinical and Experimental Allergy, 23, 911–918.

    Article  CAS  Google Scholar 

  • Fehér, Z., & Járai-Komlódi, M. (1997). An examination of the main characteristics of the pollen seasons in Budapest, Hungary (1991–1996). Grana, 36, 169–174.

    Article  Google Scholar 

  • Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.

    Article  Google Scholar 

  • Galan, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33, 293–295.

    Article  Google Scholar 

  • Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative-analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198.

    Article  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • García-Mozo, H., Galán, C., Alcázar, P., Diaz de la Guardia, C., Nieto-Lugilde, D., Recio, M., et al. (2010). Trends in grass pollen season in southern Spain. Aerobiologia, 26, 157–169.

    Article  Google Scholar 

  • Garcia-Mozo, H., Galan, C., Belmonte, J., Bermejo, D., Candau, P., Diazdelaguardia, C., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Meteorology, 149, 256–262.

    Article  Google Scholar 

  • Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., et al. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European Sites. Annals of Botany, 99, 967–985.

    Article  Google Scholar 

  • Ghitarrini, S., Galán, C., Frenguelli, G., & Tedeschini, E. (2017). Phenological analysis of grasses (Poaceae) as a support for the dissection of their pollen season in Perugia (Central Italy). Aerobiologia, 33, 1–11.

    Article  Google Scholar 

  • Goldberg, C., Buch, H., Moseholm, I., & Weeks, E. R. (1988). Airborne pollen records in Denmark, 1977–1986. Grana, 27, 209–217.

    Article  Google Scholar 

  • González Minero, F. J., Candau, P., Tomás, C., & Morales, J. (1998). Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987–96). Allergy, 53, 266–274.

    Article  Google Scholar 

  • Gorbarenko, E. V. (2016). Air temperature. In O. A. Shilovtseva & Y. I. Nezval’ (Eds.), Environmental and climate characteristics of the atmosphere in 2015 according to the measurements of the meteorological observatory of Moscow State University (pp. 10–16). Moscow: MAKS Press. (in Russian).

    Google Scholar 

  • Green, B. J., Dettmann, M., Yli-Panula, E., Rutherford, S., & Simpson, R. (2004). Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: A 5-year record, 1994–1999. International Journal of Biometeorology, 48, 172–178.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Ianovici, N. (2015). Relation between Poaceae pollen concentrations and meteorological factors during 2000–2010 in Timisoara, Romania. Acta Agrobotanica, 68, 373–381.

    Article  Google Scholar 

  • Ilyina, N. I., Luss, L. V., Kurbacheva, O. M., Nazarova, E. V., & Pavlova, K. S. (2014). The influence of climatic factors on the spectrum and structure of allergic diseases in the case of the Moscow region. Russian Allergology Journal, 2, 25–31. (In Russian).

    Google Scholar 

  • Jäger, S., Nilsson, S., Berggren, B., Pessi, A.-M., Helander, M., & Ramford, H. (1996). Trends in some airborne tree pollen in the Nordic countries and Austria, 1980–1993: A comparison between Stockholm, Trondheim, Turku and Vienna. Grana, 35, 171–178.

    Article  Google Scholar 

  • Jäger, S., Spieksma, E. T. M., & Nolard, N. (1991). Fluctuations and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden, and Brussels. Grana, 30, 309–312.

    Article  Google Scholar 

  • Janati, A., Bouziane, H., del Mar Trigo, M., Kadiri, M., & Kazzaz, M. (2017). Poaceae pollen in the atmosphere of Tetouan (NW Morocco): Effect of meteorological parameters and forecast of daily pollen concentration. Aerobiologia, 33(4), 517–528.

    Article  Google Scholar 

  • Jato, V., Rodríguez-Rajo, F. J., Seijo, M. C., & Aira, M. J. (2009). Poaceae pollen in Galicia (N.W. Spain): Characterisation and recent trends in atmospheric pollen season. International Journal of Biometeorology, 53, 333–344.

    Article  CAS  Google Scholar 

  • Kabacoff, R. I. (2014). R in action. Data analysis and graphics with R (p. 588). Moscow: DMK Press. (in Russian).

    Google Scholar 

  • Kasprzyk, I., & Walanus, A. (2010). Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). Journal of Environmental Monitoring, 12, 906–916.

    Article  CAS  Google Scholar 

  • Konstantinov, P. I. (2015). Atmospheric precipitation. In O. A. Shilovtseva & Y. I. Nezval (Eds.), Environmental and climate characteristics of the atmosphere in 2014 according to the measurements of the meteorological observatory of Moscow State University (pp. 47–50). Moscow: MAKS Press. (in Russian).

    Google Scholar 

  • Laaidi, M. (2001). Forecasting the start of the pollen season of Poaceæ: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45, 1–7.

    Article  CAS  Google Scholar 

  • Matveev, A. P. (1983). Phleum pretense. In T. A. Rabotnov (Ed.), Biological flora of Moscow region (pp. 41–57). Moscow: MSU. (in Russian).

    Google Scholar 

  • Matyasovszky, I., Makra, L., Guba, Z., Pátkai, Z., Páldy, A., & Sümeghy, Z. (2011). Estimating the daily Poaceae pollen concentration in Hungary by linear regression conditioning on weather types. Grana, 50, 208–216.

    Article  Google Scholar 

  • Myszkowska, D. (2010). The grass pollen season dynamics in relation to the meteorological conditions in Cracow, southern Poland, 1991–2008. Acta Agrobotanica, 63, 85–96.

    Article  Google Scholar 

  • Myszkowska, D. (2014). Poaceae pollen in the air depending on the thermal conditions. International Journal of Biometeorology, 58, 975–986.

    Article  Google Scholar 

  • Myszkowska, D., & Majewska, R. (2014). Pollen grains as allergenic environmental factors—New approach to the forecasting of the pollen concentration during the season. Annals of Agricultural and Environmental Medicine, 21, 681–688.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20, 179–182.

    Article  Google Scholar 

  • Peternel, R., Srnec, L., Čulig, J., Hrga, I., & Hercog, P. (2006). Poaceae pollen in the atmosphere of Zagreb (Croatia), 2002–2005. Grana, 45, 130–136.

    Article  Google Scholar 

  • Piotrowska, K. (2006). The effect of meteorological factors on the start of the grass pollen season in Lublin in the years 2001–2004. Acta Agrobotanica, 59, 365–372.

    Article  Google Scholar 

  • Piotrowska, K. (2012). Forecasting the Poaceae pollen season in eastern Poland. Grana, 51, 263–269.

    Article  Google Scholar 

  • Prieto-Baena, J. C., Hidalgo, P. J., Domínguez, E., & Galán, C. (2003). Pollen production in the Poaceae family. Grana, 42, 153–160.

    Article  Google Scholar 

  • Puc, M., & Puc, M. I. (2004). Allergenic airborne grass pollen in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 11, 237–244.

    Google Scholar 

  • Puc, M., & Wolski, T. (2013). Forecasting of the selected features of Poaceae (R. Br.) Barnh., Artemisia L. and Ambrosia L. pollen season in Szczecin, north-western Poland, using Gumbel’s distribution. Annals of Agricultural and Environmental Medicine, 20, 36–47.

    Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 18 Mar 2017.

  • Recio, M., Docampo, S., García-Sánchez, J., Trigo, M. M., Melgar, M., & Cabezudo, B. (2010). Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agricultural and Forest Meteorology, 150, 931–940.

    Article  Google Scholar 

  • Rodríguez-Rajo, F. J., Astray, G., Ferreiro-Lage, J. A., Aira, M. J., Jato-Rodriguez, M. V., & Mejuto, J. C. (2010). Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Networks, 23, 419–425.

    Article  Google Scholar 

  • Sánchez-Mesa, J. A., Galan, C., Martínez-Heras, J. A., & Hervás-Martínez, C. (2002). The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: The southern part of the Iberian Peninsula. Clinical and Experimental Allergy, 32, 1606–1612.

    Article  Google Scholar 

  • Sánchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galan, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.

    Article  Google Scholar 

  • Savitsky, V. D., & Kobzar, V. N. (1996). Aerobiology in Russia and neighbouring countries, 1980–1993. Grana, 35, 314–318.

    Article  Google Scholar 

  • Severova, E., & Volkova, O. (2017). Variations and trends of Betula pollen seasons in Moscow (Russia) in relation to meteorological parameters. Aerobiologia, 33, 253–264.

    Article  Google Scholar 

  • Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35, 1400–1406.

    Article  CAS  Google Scholar 

  • Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69, 913–923.

    Article  CAS  Google Scholar 

  • Spieksma, F. T. M., Corden, J. M., Detandt, M., Millington, W. M., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19, 171–184.

    Article  Google Scholar 

  • Spieksma, F. M., & Nikkels, A. H. (1998). Airborne grass pollen in Leiden, The Netherlands: Annual variations and trends in quantities and season starts over 26 years. Aerobiologia, 14, 347–358.

    Article  Google Scholar 

  • Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.

    Article  Google Scholar 

  • Subiza, J., Masiello, J. M., Subiza, J. L., Jerez, M., Hinojosa, M., & Subiza, E. (1992). Prediction of annual variations in atmospheric concentrations of grass pollen. A method based on meteorological factors and grain crop estimates. Clinical and Experimental Allergy, 22, 540–546.

    Article  CAS  Google Scholar 

  • Territorial Unit of the Federal Statistical Service of the City of Moscow. (2016). http://moscow.gks.ru/wps/wcm/connect/rosstat_ts/moscow/ru/statistics/population/.

  • The Plant List. (2013). Version 1.1. Published on the internet. http://www.theplantlist.org/. Accessed 01 Jan 2017.

  • Ugolotti, M., Pasquarella, C., Vitali, P., Smith, M., & Albertini, R. (2015). Characteristics and trends of selected pollen seasons recorded in Parma (Northern Italy) from 1994 to 2011. Aerobiologia, 31, 341–352.

    Article  Google Scholar 

  • Volkova, O., Severova, E., & Nosova, M. (2016). Six years of observation of airborne and deposited pollen in Central European Russia: First results. Grana, 55, 311–318.

    Article  Google Scholar 

  • Voltolini, S., Minale, P., Troise, C., Bignardi, D., Modena, P., Arobba, D., et al. (2000). Trend of herbaceous pollen diffusion and allergic sensitisation in Genoa, Italy. Aerobiologia, 16, 245–249.

    Article  Google Scholar 

  • Wan, S., Yuan, T., Bowdish, S., Wallace, L., Russell, S. D., & Luo, Y. (2002). Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: Implications for public health. American Journal of Botany, 89, 1843–1846.

    Article  Google Scholar 

  • Yermakova, I. M. (1976). Festuca pratensis. In T. A. Rabotnov (Ed.), Biological flora of Moscow region (pp. 105–119). Moscow: MSU. (in Russian).

    Google Scholar 

Download references

Acknowledgements

This research was conducted with the financial support of Russian Science Foundation (RNF), Grant 14-50-00029 “Scientific basis of the national biobank—depository of the living systems.” The authors are very thankful to Olga Shilovtseva and Ekaterina Gorbarenko for providing meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Volkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, O., Severova, E. Poaceae pollen season and associations with meteorological parameters in Moscow, Russia, 1994–2016. Aerobiologia 35, 73–84 (2019). https://doi.org/10.1007/s10453-018-9540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9540-8

Keywords

Navigation