Skip to main content
Log in

Enrichment of airborne Japanese cedar (Cryptomeria japonica) pollen in mountain ranges when passing through a front accompanying temperate low pressure

  • Brief Communication
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Values obtained by the real-time pollen monitors set up at 14 measuring points in the Tohoku region indicate that a large amount of Japanese cedar pollen was dispersed along the western region and northern flank of the Ou Mountain Range when a front accompanying the temperate low pressures passed through the west sea of northern Hokkaido. We are sure that this phenomenon is related to pollen enrichment by mountain ranges. The time at which highest concentrations of pollen grains were observed shifted from the western to the eastern side, in accordance with the path of the front. No pollen was seen after the passage of the cold front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bastl, K., Kmenta, M., Jäger, S., Bergmann, K.-C., Network, European Aeroallergen, & Berger, U. (2014). Development of a symptom load index: enabling temporal and regional pollen season comparisons and pointing out the need for personalized pollen information. Aerobiologia, 30, 269–280.

    Article  Google Scholar 

  • Bilińska, D., Skjøth, C. A., Werner, M., & Kryza, M. (2017). Source regions of ragweed pollen arriving in south-western Poland and the influence of meteorological data on the HYSPLIT model results. Aerobiologia. doi:10.1007/s10453-017-9471-9.

    Google Scholar 

  • Cariñanos, P., Galan, C., Alcazar, P., & Dominguez, E. (2004). Airborne pollen records response to climatic conditions in and areas of the Iberian Peninsula. Environmental and Experimental Botany, 52, 11–22.

    Article  Google Scholar 

  • Charalampopoulos, A., Damialis, A., Tsiripidis, I., Mavrommatis, T., Halley, J. M., & Vokou, D. (2013). Pollen production and circulation patterns along an elevation gradient in Mt Olympos (Greece) National Park. Aerobiologia, 29, 455–472.

    Article  Google Scholar 

  • Cour, P., Zheng, Z., Duzer, D., Calleja, M., & Yao, Z. (1999). Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Review of Paleobotany and Palynology, 104, 183–204.

    Article  Google Scholar 

  • Fontana, S. L. (2003). Pollen deposition in coastal dunes, south Buenos Aires Province. Argentina Review of Paleobotany and Palynology, 126, 17–37.

    Article  Google Scholar 

  • Hjelmroos, M. (1991). Evidence of long-distance transport of Betula pollen. Grana, 30, 215–228.

    Article  Google Scholar 

  • Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., & Nakamura, K. (2007). An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment, 41, 7987–7993.

    Article  CAS  Google Scholar 

  • Kawashima, S., & Takahashi, Y. (1999). An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana, 38, 316–324.

    Article  Google Scholar 

  • Kawashima, S., Takahashi, Y., Aikawa, S., & Nagoya, T. (1995). An attempt of applying the image processing for the automatic estimation of sampled airborne pollen. Japanese Journal of Allergology, 44, 1150–1158.

    CAS  Google Scholar 

  • Kawashima, S., Thibaudon, M., Matsuda, S., Fujita, T., Lemonis, N., Clot, B., et al. (2017). Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia. doi:10.1007/s10453-017-9474-6.

    Google Scholar 

  • Norris-Hill, J., & Emberlin, J. (1993). The incidence of increased pollen concentrations during rainfall in the air of London. Aerobiologia, 9, 27–32.

    Article  Google Scholar 

  • Pan, Y. F., Yan, S., Behling, H., & Mu, G. J. (2013). Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction. Aerobiologia, 29, 161–173.

    Article  Google Scholar 

  • Sahashi, N. (1998). Cold air dome and role in pollen transport based on preliminary survey of airborne pollen in upper air. Japanese Journal of Palynology, 44, 125–128.

    Google Scholar 

  • Seno, S., Enomoto, T., Dake, Y., Ikeda, H., Sakota, T., Saito, Y., et al. (2003). 2002 survey of airborne pollen in Wakayama city with a real-time pollen counter (KH-3000). Practica Otologica Kyoto, 96, 83–90.

    Article  Google Scholar 

  • Sikoparija, B., Skjoth, C. A., Kubler, K. A., Dahl, A., Sommer, J., Grewling, L., et al. (2013). A mechanism for long distance transport of Ambrosia pollen from the Pannonian Plain. Agricultural and Forest Meteorology, 180, 112–117.

    Article  Google Scholar 

  • Takahashi, Y., Aoyama, M., Yoshitake, M., Abe, E., Ohta, N., & Sakaguchi, M. (2007). Relationship between airborne Cry j 1 and the onset time of the symptoms of Japanese cedar pollinosis patients. Allergology International, 56, 277–283.

    Article  Google Scholar 

  • Takahashi, Y., Katagiri, S., Tohkairin, K., & Hikichi, I. (1989). Hourly variation in the dispersion of Japanese cedar (Cryptomeria japonica) pollen in the Yamagata Basin and the effect of cold and warm fronts on the pollen counts. Japanese Journal of Allergology, 38, 407–412.

    CAS  Google Scholar 

  • Takahashi, Y., Kawashima, S., Fujita, T., Itoh, C., Togashi, R., & Takeda, H. (2001). Comparison between real-time pollen monitor KH-3000 and Burkard sampler. Japanese Journal Allergology, 50, 1136–1142.

    CAS  Google Scholar 

  • Takahashi, Y., Nagoya, T., Watanabe, M., Inouye, S., Sakaguchi, M., & Katagiri, S. (1993). A new method of counting airborne Japanese cedar (Cryptomeria japonica) pollen allergens by immunoblotting. Allergy, 48, 94–98.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Ohta, N., Suzuki, Y., Aoyagi, M., Mogami, K., Masuyama, K., et al. (2011). Comparison of values from two pollen monitors (KH-3000) installed at near-distance places. Arerugi & Men’eki, 18, 1512–1520.

    Google Scholar 

  • Van de Water, P. K., & Levetin, E. (2001). Contribution of upwind pollen sources to the characterization of Juniperus ashei phenology. Grana, 40, 133–141.

    Article  Google Scholar 

  • Yoda, S., Enomoto, T., Shibano, A., Ikeda, H., Yajin, S., Dake, Y., et al. (2005). A comparative study between real time monitor KH-3000 and conventional Durham sampler measuring airborne pollen. Nippon Jibiinkoka Gakkai Kaiho, 108, 801–805.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sahashi, N., Executive Secretary of the Pollen Information Association, Mr. Nakanishi, H., the management director of ‘Hanakosan’ and the Atmospheric Environmental Division, Ministry of the Environment of Japan, who permitted to make use of the pollen data. Mr. Fukushige participated in literature collection and discussion on comments from Editor and reviewers. We thank you here. This research did not receive any specific grant from funding agencies from the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, Y., Kawashima, S., Suzuki, Y. et al. Enrichment of airborne Japanese cedar (Cryptomeria japonica) pollen in mountain ranges when passing through a front accompanying temperate low pressure. Aerobiologia 34, 105–110 (2018). https://doi.org/10.1007/s10453-017-9494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9494-2

Keywords

Navigation