Skip to main content
Log in

Enhanced ambient UVB light affects growth, body condition and the investment in innate and adaptive immunity in three-spined sticklebacks (Gasterosteus aculeatus)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

With ongoing environmental change, ultraviolet-B radiation (UVB) reaching the Earth’s surface has increased over recent decades with consequences for terrestrial and also aquatic ecosystems. Despite evidence for direct physiological and immunological responses of aquatic animals following enhanced UVB exposure, studies investigating indirect impacts of ambient UVB radiation are scarce and mainly used only single doses and/or artificially high amounts of UVB. In the present study, the influence of chronic exposure to elevated UVB levels on growth, body condition and immune function was investigated in three-spined sticklebacks (Gasterosteus aculeatus). Fish were kept outdoors for 68 ± 2 days under two different spectral conditions; one group was exposed to natural solar radiation (UVB-normal), while the other group received additional UVB light for four hours daily (UVB-enhanced). Enhanced UVB radiation was within the range of UVB levels measured at the study site. Fish length and weight were determined at the beginning and end of the experiment to compare growth and body condition between the two treatment groups. At the end of the experiment, the splenosomatic index and the granulocyte-to-lymphocyte ratio were determined as immune parameters. Fish from the UVB-enhanced group showed a reduced growth and body condition as well as a lower splenosomatic index compared to the UVB-normal group. Furthermore, UVB-treated fish had a higher granulocyte-to-lymphocyte ratio representing a relatively higher activation of innate compared to adaptive immunity. Consequently, increased but ecologically relevant levels of ambient UVB negatively affect growth and body condition and have a considerable impact on immunity in three-spined sticklebacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed A, Baggott S, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97:371–377

    Article  Google Scholar 

  • Alonso-Alvarez C et al (2006) An experimental manipulation of life-history trajectories and resistance to oxidative stress. Evolution 60:1913–1924

    Article  PubMed  Google Scholar 

  • Arts MT, Browman HI, Jokinen IE, Skiftesvik AB (2010) Effects of UV radiation and diet on polyunsaturated fatty acids in the skin, ocular tissue and dorsal muscle of atlantic salmon (Salmo salar) held in outdoor rearing tanks. Photochem Photobiol 86:909–919

    Article  CAS  PubMed  Google Scholar 

  • Bakker TCM (1994) Evolution of aggressive behaviour in the threespine stickleback. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford, pp 345–380

    Google Scholar 

  • Bancroft BA, Baker NJ, Blaustein AR (2007) Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecol Lett 10:332–345

    Article  PubMed  Google Scholar 

  • Blount JD, Pike TW (2012) Deleterious effects of light exposure on immunity and sexual coloration in birds. Funct Ecol 26:37–45

    Article  Google Scholar 

  • Bolger T, Connolly PL (1989) The selection of suitable indices for the measurement and analysis of fish condition. J Fish Biol 34:171–182

    Article  Google Scholar 

  • Bothwell ML, Sherbot DMJ, Pollock CM (1994) Ecosystem response to solar ultraviolet-b radiation: influence of trophic-level interactions. Science 265:97–100

    Article  CAS  PubMed  Google Scholar 

  • Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B (Stat Method) 26:211–252

    Google Scholar 

  • Carreja B, Fernández M, Agustí S (2016) Joint additive effects of temperature and UVB radiation on zoeae of the crab Taliepus dentatus. Mar Ecol Prog Ser 550:135–145

    Article  CAS  Google Scholar 

  • Ceccato E, Cramp RL, Seebacher F, Franklin CE (2016) Early exposure to ultraviolet-B radiation decreases immune function later in life. Conserv Physiol 4:cow037

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramp RL, Reid S, Seebacher F, Franklin CE (2014) Synergistic interaction between UVB radiation and temperature increases susceptibility to parasitic infection in a fish. Biol Lett 10:20140449

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahms H-U, Lee J-S (2010) UV radiation in marine ectotherms: molecular effects and responses. Aquat Toxicol 97:3–14

    Article  CAS  PubMed  Google Scholar 

  • Debecker S, Sommaruga R, Maes T, Stoks R (2015) Larval UV exposure impairs adult immune function through a trade-off with larval investment in cuticular melanin. Funct Ecol 29:1292–1299

    Article  Google Scholar 

  • Dezfuli B, Bosi G, DePasquale J, Manera M, Giari L (2016) Fish innate immunity against intestinal helminths. Fish Shellfish Immunol 50:274–287

    Article  CAS  PubMed  Google Scholar 

  • Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–971

    Article  Google Scholar 

  • Fernández-Llario P, Parra A, Cerrato R, De Mendoza JH (2004) Spleen size variations and reproduction in a Mediterranean population of wild boar (Sus scrofa). Eur J Wildl Res 50:13–17

    Article  Google Scholar 

  • Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59

    Article  CAS  PubMed  Google Scholar 

  • Fukunishi Y, Masuda R, Robert D, Yamashita Y (2013) Comparison of UV-B tolerance between wild and hatchery-reared juveniles of red sea bream (Pagrus major) and black sea bream (Acanthopagrus schlegeli). Environ Biol Fishes 96:13–20

    Article  Google Scholar 

  • Groff AA et al (2010) UVA/UVB-induced genotoxicity and lesion repair in Colossoma macropomum and Arapaima gigas Amazonian fish. J Photochem Photobiol B Biol 99:93–99

    Article  CAS  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (1998) Effects on aquatic ecosystems. J Photochem Photobiol B Biol 46:53–68

    Article  Google Scholar 

  • Häder D-P, Kumar H, Smith R, Worrest R (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  PubMed  Google Scholar 

  • Hiermes M, Mehlis M, Rick IP, Bakker TCM (2015a) Habitat-dependent olfactory discrimination in three-spined sticklebacks (Gasterosteus aculeatus). Anim Cogn 18:839–846

    Article  PubMed  Google Scholar 

  • Hiermes M, Vitt S, Rick IP, Bakker TCM (2015b) Shoal choice and ultraviolet reflections in stickleback populations from different photic habitats. Biol J Linn Soc 116:761–772

    Article  Google Scholar 

  • Imokawa G, Nakajima H, Ishida K (2015) Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging II: over-expression of neprilysin plays an essential role. Int J Mol Sci 16:7776–7795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jokinen EI, Salo HM, Markkula SE, Immonen AK, Aaltonen TM (2001) Ultraviolet B irradiation modulates the immune system of fish (Rutilus rutilus, Cyprinidae). Part III: lymphocytes. Photochem Photobiol 73:505–512

    Article  CAS  PubMed  Google Scholar 

  • Jokinen IE, Markkula ES, Salo HM, Kuhn P, Nikoskelainen S, Arts MT, Browman HI (2008) Exposure to increased ambient ultraviolet B radiation has negative effects on growth, condition and immune function of juvenile Atlantic salmon (Salmo salar). Photochem Photobiol 84:1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Jokinen IE, Salo HM, Markkula E, Rikalainen K, Arts MT, Browman HI (2011) Additive effects of enhanced ambient ultraviolet B radiation and increased temperature on immune function, growth and physiological condition of juvenile (parr) Atlantic salmon, Salmo salar. Fish Shellfish Immunol 30:102–108

    Article  CAS  PubMed  Google Scholar 

  • Kortet R, Taskinen J, Sinisalo T, Jokinen I (2003) Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L. Biol J Linn Soc 78:117–127

    Article  Google Scholar 

  • Kouwenberg J, Browman H, Cullen J, Davis R, St-Pierre J-F, Runge J (1999) Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. I. Atlantic cod (Gadus morhua) eggs. Mar Biol 134:269–284

    Article  Google Scholar 

  • Kurtz J, Kalbe M, Langefors S, Mayer I, Milinski M, Hasselquist D (2007) An experimental test of the immunocompetence handicap hypothesis in a teleost fish: 11-ketotestosterone suppresses innate immunity in three-spined sticklebacks. Am Nat 170:509–519

    PubMed  Google Scholar 

  • Lesser MP, Farrell JH, Walker CW (2001) Oxidative stress, DNA damage and p53 expression in the larvae of Atlantic cod (Gadus morhua) exposed to ultraviolet (290–400 nm) radiation. J Exp Biol 204:157–164

    CAS  PubMed  Google Scholar 

  • Li C-Y, Earley RL, Huang S-P, Hsu Y (2014) Fighting experience alters brain androgen receptor expression dependent on testosterone status. Proc R Soc B 281:20141532

    Article  Google Scholar 

  • Llabrés M, Agustí S, Fernández M, Canepa A, Maurin F, Vidal F, Duarte CM (2013) Impact of elevated UVB radiation on marine biota: a meta-analysis. Glob Ecol Biogeogr 22:131–144

    Article  Google Scholar 

  • Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  PubMed  Google Scholar 

  • Markkula SE, Salo HM, Immonen AK, Jokinen EM (2005) Effects of short- and long-term ultraviolet B irradiation on the immune system of the common carp (Cyprinus carpio). Photochem Photobiol 81:595–602

  • Markkula SE, Salo HM, Rikalainen A-K, Jokinen EI (2006) Different sensitivity of carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) to the immunomodulatory effects of UVB irradiation. Fish Shellfish Immunol 21:70–79

    Article  CAS  PubMed  Google Scholar 

  • Markkula E, Salo HM, Rikalainen K, Jokinen IE (2009) Long-term UVB Irradiation Affects the Immune Functions of Carp (Cyprinus carpio) and Rainbow Trout (Oncorhynchus mykiss). Photochem Photobiol 85:347–352

    Article  CAS  PubMed  Google Scholar 

  • Mehlis M, Bakker TCM (2014) The influence of ambient water temperature on sperm performance and fertilization success in three-spined sticklebacks (Gasterosteus aculeatus). Evol Ecol 28:655–667

    Article  Google Scholar 

  • Modarressie R, Rick IP, Bakker TCM (2006) UV matters in shoaling decisions. Proc R Soc Lond B 273:849–854

    Article  Google Scholar 

  • Møller AP, Sorci G, Jø Erritz (1998) Sexual dimorphism in immune defense. Am Nat 152:605–619

    Article  PubMed  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    Article  PubMed  Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • Ottová E, Šimková A, Jurajda P, Dávidová M, Ondračková M, Pečínková M, Gelnar M (2005) Sexual ornamentation and parasite infection in males of common bream (Abramis brama): a reflection of immunocompetence status or simple cost of reproduction? Evol Ecol Res 7:581–593

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2009) The R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-96. R Foundation for Statistical Computing, Vienna

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reuder J, Dameris M, Koepke P (2001) Future UV radiation in Central Europe modelled from ozone scenarios. J Photochem Photobiol B Biol 61:94–105

    Article  CAS  Google Scholar 

  • Rick IP, Bakker TCM (2008) Males do not see only red: UV wavelengths and male territorial aggression in the three-spined stickleback (Gasterosteus aculeatus). Naturwissenschaften 95:631–638

    Article  CAS  PubMed  Google Scholar 

  • Rick IP, Bakker TCM (2010) Ultraviolet light influences habitat preferences in a fish under predation risk. Evol Ecol 24:25–37

  • Rick IP, Modarressie R, Bakker TCM (2006) UV wavelengths affect female mate choice in three-spined sticklebacks. Anim Behav 71:307–313

    Article  Google Scholar 

  • Rick IP, Bloemker D, Bakker TCM (2012) Spectral composition and visual foraging in the three-spined stickleback (Gasterosteidae: Gasterosteus aculeatus L.): elucidating the role of ultraviolet wavelengths. Biol J Linn Soc 105:359–368

    Article  Google Scholar 

  • Rick IP, Mehlis M, Eßer E, Bakker TCM (2014) The influence of ambient ultraviolet light on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus). Oecologia 174:393–402

    Article  PubMed  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

  • Rowe MP, Baube CL, Loew ER, Phillips JB (2004) Optimal mechanisms for finding and selecting mates: how threespine stickleback (Gasterosteus aculeatus) should encode male throat colors. J Comp Physiol A 190:241–256

    Article  CAS  Google Scholar 

  • Salo HM, Aaltonen TM, Markkula SE, Jokinen EI (1998) Ultraviolet B irradiation modulates the immune system of fish (Rutilus rutilus, Cyprinidae). I. Phagocytes. Photochem Photobiol 67:433–437

    Article  CAS  PubMed  Google Scholar 

  • Salo HM, Jokinen EI, Markkula SE, Aaltonen TM (2000a) Ultraviolet B irradiation modulates the immune system of fish (Rutilus rutilus, Cyprinidae) II: blood. Photochem Photobiol 71:65–70

    Article  CAS  PubMed  Google Scholar 

  • Salo HM, Jokinen EI, Markkula SE, Aaltonen TM, Penttilä HT (2000b) Comparative effects of UVA and UVB irradiation on the immune system of fish. J Photochem Photobiol B Biol 56:154–162

    Article  CAS  Google Scholar 

  • Scharsack JP, Kalbe M, Derner R, Kurtz J, Milinski M (2004) Modulation of granulocyte responses in three-spined sticklebacks Gasterosteus aculeatus infected with the tapeworm Schistocephalus solidus. Dis Aquat Org 59:141–150

    Article  CAS  PubMed  Google Scholar 

  • Seebacher F, Kazerouni EG, Franklin CE (2016) Ultraviolet B radiation alters movement and thermal selection of zebrafish (Danio rerio). Biol Lett 12:20160258

    Article  PubMed  PubMed Central  Google Scholar 

  • Seppänen E, Kuukka H, Voutilainen A, Huuskonen H, Peuhkuri N (2009) Metabolic depression and spleen and liver enlargement in juvenile Arctic charr Salvelinus alpinus exposed to chronic parasite infection. J Fish Biol 74:553–561

    Article  PubMed  Google Scholar 

  • Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  PubMed  Google Scholar 

  • Skarstein F, Folstad I, Liljedal S (2001) Whether to reproduce or not: immune suppression and costs of parasites during reproduction in the Arctic charr. Can J Zool 79:271–278

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Subramani PA, Hameed B, Michael RD (2015) Effect of UV-B radiation on the antibody response of fish: implication on high altitude fish culture. J Photochem Photobiol B Biol 143:1–4

    Article  CAS  Google Scholar 

  • Sucré E, Vidussi F, Mostajir B, Charmantier G, Lorin-Nebel C (2011) Impact of ultraviolet-B radiation on planktonic fish larvae: alteration of the osmoregulatory function. Aquat Toxicol 109:194–201

    Article  PubMed  Google Scholar 

  • Tort L, Balasch J, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Inmunologia 22:277–286

    Google Scholar 

  • Uribe C, Folch H, Enriquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56:486–503

    CAS  Google Scholar 

  • Uberoi A, Yoshida S, Frazer IH, Pitot HC, Lambert PF (2016) Role of ultraviolet radiation in papillomavirus-induced disease. PLoS Pathog 12:e1005664

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullrich SE (2016) Mechanisms by which UV radiation, a natural component of sunlight, suppresses the immune response. In: Esser C (ed) Environmental influences on the immune system. Springer, Vienna, pp 155–179

    Chapter  Google Scholar 

  • Williamson CE, Rose KC (2010) When UV meets fresh water. Science 329:637–639

    Article  CAS  PubMed  Google Scholar 

  • Williamson CE et al (2014) Solar ultraviolet radiation in a changing climate. Nat Clim Change 4:434–441

    Article  Google Scholar 

  • Wootton RJ (1984) A functional biology of sticklebacks. Croom Helm, London

    Book  Google Scholar 

  • Zapata A, Diez B, Cejalvo T, Gutierrez-de Frias C, Cortes A (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol 20:126–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Frederik Franke for laboratory assistance and the Bakker research group for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Vitt.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitt, S., Rahn, A.K., Drolshagen, L. et al. Enhanced ambient UVB light affects growth, body condition and the investment in innate and adaptive immunity in three-spined sticklebacks (Gasterosteus aculeatus). Aquat Ecol 51, 499–509 (2017). https://doi.org/10.1007/s10452-017-9632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-017-9632-5

Keywords

Navigation