Skip to main content
Log in

Diffusion of non-volatile phenolic compounds in zeolite beta and silicalite in liquid phase

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The present study aims to systematically investigate the adsorption kinetics of “non-volatile” phenolic compounds with different critical diameters (p-coumaric acid, ferulic acid, sinapinic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, and vanillin) onto zeolite beta and silicalite in several solvents. In the aqueous phase, the corrected diffusivity of non-volatile phenolic compounds is 2–5 orders of magnitude smaller than that of volatile aromatic compounds with the same critical diameter. On the other hand, the corrected diffusivity in zeolite beta is on the same order of magnitude among non-volatile phenolic compounds, despite the significant difference in critical diameter of the adsorbate. This suggests that the intracrystalline diffusivity of the non-volatile adsorbate is strongly affected by its original molecular immobility, rather than by the size (narrowness) of the adsorbate and micropore aperture. Non-volatility is considered to remarkably lower the molecular mobility of adsorbate on the surface of zeolite, even in the liquid phase. In addition, the intracrystalline diffusivity of non-volatile adsorbate is strongly affected by the type of solvent, and a close correlation was found between intracrystalline diffusivity and adsorption affinity. Revelations as to the kinetic behavior of non-volatile adsorbate in zeolite are expected to supply more information on the kinetic separation of compounds in the liquid phase. The significant difference in diffusivity among non-volatile and volatile adsorbates in zeolite leads to the possibility of kinetic separation among these adsorbates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C:

Concentration of adsorbate in solution (mmol/L)

C0 :

Initial concentration of adsorbate in solution (mmol/L)

Ce :

Equilibrium concentration of adsorbate in solution (mmol/L)

D0 :

Corrected diffusivity (m2/s)

DC :

Intracrystalline diffusivity (m2/s)

DS :

Surface diffusivity (cm2/s)

E:

Activation energy for diffusion (kJ/mol)

k:

Freundlich constant ((mmol/g)/(mmol/L)1/n)

KH :

Linear isotherm constant (L/g)

n:

Freundlich constant (−)

q:

Adsorption amount (mmol/g)

q0 :

Adsorption amount when equilibrium concentration of adsorbate is C 0 (mmol/g)

qe :

Equilibrium adsorption amount (mmol/g)

R:

Radius of an adsorbent particle (m)

r:

Radial distance from the center of an adsorbent particle (m)

T:

Temperature (K)

t:

Time (s)

Tb :

Boiling point temperature (K)

V:

Volume of solution (L)

w:

Weight of adsorbent (g)

φ:

Composition of methanol in methanol/water mixture solution (vol %)

References

  • Apelblat, A., Manzurola, E.: Solubilities ofL-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 29(12), 1527–1533 (1997)

    Article  CAS  Google Scholar 

  • Caro, J., Bülow, M., Richter-Mendau, J., Kärger, J., Hunger, M., Freude, D., Rees, L.V.: Nuclear magnetic resonance self-diffusion studies of methanol–water mixtures in pentasil-type zeolites. J. Chem. Soc. Faraday Trans. 1 83(6), 1843–1849 (1987)

    Article  CAS  Google Scholar 

  • Caro, J., Hǒcevar, S., Kärger, J., Riekert, L.: Intracrystalline self-diffusion of H2O and CH4 in ZSM-5 zeolites. Zeolites 6(3), 213–216 (1986)

    Article  CAS  Google Scholar 

  • Cavalcante, C.L.J., Ruthven, D.M.: Adsorption of branched and cyclic paraffins in silicalite. 2. Kinetics. Ind. Eng. Chem. Res. 34(1), 185–191 (1995)

    Article  CAS  Google Scholar 

  • Couteau, D., Mathaly, P.: Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract. Ind. Crops Prod. 6(3), 237–252 (1997)

    Article  CAS  Google Scholar 

  • Dovbii, O.A., Kazakova, O.A., Lipkovskaya, N.A.: The effect of the structure of cinnamic acid derivatives on their interaction with highly dispersed silica in aqueous medium. Colloid J. 68(6), 707–712 (2006)

    Article  CAS  Google Scholar 

  • Dávila-Guzman, N.E., Cerino-Córdova, F.J., Diaz-Flores, P.E., Rangel-Mendez, J.R., Sánchez-González, M.N., Soto-Regalado, E.: Equilibrium and kinetic studies of ferulic acid adsorption by Amberlite XAD-16. Chem. Eng. J. 183, 112–116 (2012)

    Article  Google Scholar 

  • Eic, M., Ruthven, D.M.: Diffusion of linear paraffins and cyclohexane in NaX and 5A zeolite crystals. Zeolites 8(6), 472–479 (1988)

    Article  CAS  Google Scholar 

  • Fujita, H., Sasano, H., Miyajima, R., Sakoda, A.: Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]4−. Adsorption 20(7), 905–915 (2014)

    Article  CAS  Google Scholar 

  • Germanus, A., Kärger, J., Pfeifer, H., Samulevič, N.N., Zďanov, S.P.: Intracrystalline self-diffusion of benzene, toluene and xylene isomers in zeolites NaX. Zeolites 5(2), 91–95 (1985)

    Article  CAS  Google Scholar 

  • Harrison, I.D., Leach, H.F., Whan, D.A.: Comparison of the shape selective properties of ferrierite, ZSM—5 and ZSM—11. Zeolites 7(1), 21–27 (1987)

    Article  CAS  Google Scholar 

  • Hibbe, F., Chmelik, C., Heinke, L., Pramanik, S., Li, J., Ruthven, D.M., Tzoulaki, D., Kaerger, J.: The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J. Am. Chem. Soc. 133(9), 2804–2807 (2011)

    Article  CAS  Google Scholar 

  • Koubaissy, B., Toufaily, J., El-Murr, M., Jean Daou, T., Hafez, H., Joly, G., Hamieh, T.: Adsorption kinetics and equilibrium of phenol drifts on three zeolites. Open Eng. 2(3), 435–444 (2012)

    Article  CAS  Google Scholar 

  • Kärger, J.: Measurement of diffusion in zeolites: a never ending challenge? Adsorpt. J. Int. Adsorpt. Soc. 9(1), 29–35 (2003)

    Article  Google Scholar 

  • Kärger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids. Wiley, New York (1992a)

    Google Scholar 

  • Kärger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids, pp. 516–518. Wiley, New York (1992b)

    Google Scholar 

  • Kärger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids, pp. 492–495. Wiley, New York (1992c)

    Google Scholar 

  • Kärger, J., Ruthven, D.M.: Diffusion in Zeolites and Other Microporous Solids, pp. 234–235. Wiley, New York (1992d)

    Google Scholar 

  • Meshko, V., Markovska, L., Mincheva, M., Rodrigues, A.E.: Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water Res. 35(14), 3357–3366 (2001)

    Article  CAS  Google Scholar 

  • Noubigh, A., Abderrabba, M., Provost, E.: Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water. J. Chem. Thermodyn. 39(2), 297–303 (2007)

    Article  CAS  Google Scholar 

  • Patel, V., Ray, D., Aswal, V.K., Bahadur, P.: Triton X-100 micelles modulated by solubilized cinnamic acid analogues: the pH dependant micellar growth. Colloids Surf. A 450, 106–114 (2014)

    Article  CAS  Google Scholar 

  • Roque-Malherbe, R., Wendelbo, R., Mifsud, A., Corma, A.: Diffusion of aromatic hydrocarbons in H-ZSM-5, H-Beta, and H-MCM-22 zeolites. J. Phys. Chem. 99(38), 14064–14071 (1995)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Eic, M., Richard, E.: Diffusion of C8 aromatic hydrocarbons in silicalite. Zeolites 11(7), 647–653 (1991)

    Article  CAS  Google Scholar 

  • Saint Remi, J.C., Lauerer, A., Chmelik, C., Vandendael, I., Terryn, H., Baron, G.V., Denayer, J.F.M., Koerger, J.: The role of crystal diversity in understanding mass transfer in nanoporous materials. Nat. Mater. 15(4), 401–406 (2016)

    Article  Google Scholar 

  • Suzuk, M.: Adsorption engineering, pp. 108–109. Kodansha, Tokyo (1990)

    Google Scholar 

  • Suzuki, M., Kawazoe, K.: Effective surface diffusion coefficients of volatile organics on activated carbon during adsorption from aqueous solution. J. Chem. Eng. Jpn. 8(5), 379–382 (1975)

    Article  CAS  Google Scholar 

  • Wu, P., Debebe, A., Ma, Y.H.: Adsorption and diffusion of C6 and C8 hydrocarbons in silicalite. Zeolites 3(2), 118–122 (1983)

    Article  CAS  Google Scholar 

  • Yousef, R.I., El-Eswed, B., Ala’a, H.: Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem. Eng. J. 171(3), 1143–1149 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Ngoc Linh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linh, T.N., Fujita, H. & Sakoda, A. Diffusion of non-volatile phenolic compounds in zeolite beta and silicalite in liquid phase. Adsorption 22, 1001–1011 (2016). https://doi.org/10.1007/s10450-016-9808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9808-7

Keywords

Navigation