Skip to main content
Log in

Synthesis, characterization and evaluation of porous polybenzimidazole materials for CO2 adsorption at high pressures

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Porous polybenzimidazole polymers have been under investigation for high and low pressure CO2 adsorption due to the well-built stability under high pressure and at various temperatures. Pressure swing and temperature swing processes like integrated gasification combined cycle require materials which can operate efficiently at high pressure and high temperature and can remove CO2. In this manuscript we report synthesis, characterization and evaluation of two polybenzimidazole materials (PBI-1 and PBI-2), which were prepared with two different solvents and different cross-linking agents by condensation techniques. Low and high pressure CO2 sorption characteristic of both the materials were evaluated at 273 and 298 K. Thermal gravimetric analysis showed high temperature stability up to 500 °C for the studied materials. PBI-1 has shown very good performance by adsorbing 3 times more (1.8025 mmolg−1 of CO2) than PBI-2 at 0 °C and at low pressures. Despite low surface area results obtained via BET techniques, at 50 bars PBI-1 adsorbed up to 6.08 mmolg−1 of CO2. Studied materials have shown flexible behavior under applied pressure that leads to so-called “gate-opening” adsorption behavior and it makes these materials promising adsorbents of CO2 at high pressures and it is discussed in the manuscript in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Khabbaz, M.A., Khunsupat, R., Jones, C.W.: Guanidinylated poly(allylamine) supported on mesoporous silica for CO2 capture from flue gas. Fuel (2014). doi:10.1016/j.fuel.2013.12.018

    Google Scholar 

  • Asensio, J.A., Borrós, S., Gómez-Romero, P.: Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly(2,5-benzimidazole) membranes. J. Electrochem. Soc. 151, A304–A310 (2004)

    Article  CAS  Google Scholar 

  • Ashourirad, B., Sekizkardes, A.K., Altarawneh, S., El-Kaderi, H.M.: Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers. Chem. Mater. 27, 1349–1358 (2015)

    Article  CAS  Google Scholar 

  • Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S., Zhu, G.: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009)

    Article  CAS  Google Scholar 

  • Bhadra, S., Kim, N.H., Choi, J.S., Rhee, K.Y., Lee, J.H.: Hyperbranched poly(benzimidazole-co-benzene) with honeycomb structure as a membrane for high-temperature proton-exchange membrane fuel cells. J. Power Sources 195, 2470–2477 (2010)

    Article  CAS  Google Scholar 

  • Bhavsar, R.S., Nahire, S.B., Kale, M.S., Patil, S.G., Aher, P.P., Bhavsar, R.A., Kharul, U.K.: Polybenzimidazoles based on 3,3′-diaminobenzidine and aliphatic dicarboxylic acids: synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material. J. Appl. Polym. Sci. 120, 1090–1099 (2011)

    Article  CAS  Google Scholar 

  • Blok, K., Williams, R.H., Katofski, R.E., Hendricks, C.A.: Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy 22, 161–168 (1997)

    Article  CAS  Google Scholar 

  • Brooks, N.W., Duckett, R.A., Rose, J., Ward, I.M., Clements, J.: An NMR study of absorbed water in polybenzimidazole. Polymer 34, 4038–4042 (1993)

    Article  CAS  Google Scholar 

  • Cariou, R., Chirinos, J.J., Gibson, V.C., Jacobsen, G., Tomov, A.K., Britovsek, G.J.P., White, A.J.P.: The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene. Dalton Trans. 39, 9039–9045 (2010)

    Article  CAS  Google Scholar 

  • Casco, M.E., Martinez, M., Silvestre, J., Rodriguez, F.: Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67, 230–235 (2014)

    Article  CAS  Google Scholar 

  • Chen, Z., Deng, S., Wei, H., Wang, B., Huang, J., Yu, G.: Activated carbons and amine-modified materials for carbon dioxide capture: a review. Front. Environ. Sci. Eng. 7, 326–340 (2013)

    Article  CAS  Google Scholar 

  • Conti, F., Willbold, S., Mammi, S., Korte, C., Lehnert, W., Stolten, D.: Carbon NMR investigation of the polybenzimidazole-dimethylacetamide interactions in membranes for fuel cells. New J. Chem. 37, 152–156 (2013)

    Article  CAS  Google Scholar 

  • Dawson, R., Adams, D.J., Cooper, A.I.: Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci. 2, 1173–1177 (2011)

    Article  CAS  Google Scholar 

  • Du, N., Park, H.B., Robertson, G.P., Dal-Cin, M.M., Visser, T., Scoles, L., Guiver, M.D.: Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10(5), 372–375 (2011)

    Article  CAS  Google Scholar 

  • Eftekhari, A.A., Van Der Kooi, H., Bruining, H.: Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy 45, 729–745 (2012)

    Article  CAS  Google Scholar 

  • Farla, J.M., Hendriks, C., Blok, K.: Carbon dioxide recovery from industrial processes. Clim. Change 29, 439–461 (1995)

    Article  CAS  Google Scholar 

  • Glier, J.C., Rubin, E.S.: Assessment of solid sorbents as a competitive post-combustion CO2 capture technology. Energy Procedia 37, 65–72 (2013)

    Article  CAS  Google Scholar 

  • Guenther, J., Wong, M., Sue, H.J., Bremmer, T., Blümel, J.: High-temperature steam-treatment of PBI, PEKK, and a PEKK-PBI Blend: a solid-state NMR and IR spectroscopic study. J. Appl. Polym. Sci. 128, 4395–4404 (2013)

    Article  CAS  Google Scholar 

  • Han, J.-H., Ryu, J.H., Lee, L.B.: Multi-objective optimization design of hydrogen infrastructures simultaneously considering economic cost, safety and CO2 emission. Chem. Eng. Res. Des. 91, 1427–1439 (2013)

    Article  CAS  Google Scholar 

  • Han, M., Zhang, G., Liu, Z., Wang, S., Li, M., Zhu, J., Li, H., Zhang, Y., Lew, C.M., Na, H.: Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J. Mater. Chem. 21, 2187–2193 (2011)

    Article  CAS  Google Scholar 

  • Han, S.H., Lee, J.E., Lee, K.J., Park, H.B., Lee, Y.M.: Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 357, 143–151 (2010)

    Article  CAS  Google Scholar 

  • He, H., Li, W., Lamson, M., Zhong, D., Konkolewicz, D., Hui, C.M., Yaccato, T.: Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. Polymer 55, 385–394 (2014)

    Article  CAS  Google Scholar 

  • Iqbal, H.M.S., Bhowmik, S., Benedictus, R., Moon, J.B., Kim, C.G., Mourad, A.H.I.: Processing and characterization of space-durable high-performance polymeric nanocomposite. J. Thermophys. Heat Transfer 25, 87–95 (2011)

    Article  CAS  Google Scholar 

  • Jansen, D., Oudhuis, A.B.J., van Veen, H.M.: CO2 reduction potential of future coal gasification based power generation technologies. Energy Convers. Manag. 33, 365–372 (1992)

    Article  CAS  Google Scholar 

  • Jouanneau, J., Mercier, R., Gonon, L., Gebel, G.: Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes. Macromolecules 40, 983–990 (2007)

    Article  CAS  Google Scholar 

  • Jung, J.Y., Karadas, S., Zulfiqar, S., Deniz, E., Aparicio, S., Atilhan, M., Yavuz, C.T., Han, S.M.: Limitations and high pressure behavior of MOF-5 for CO2 capture. Phys. Chem. Chem. Phys. 15, 14319–14327 (2013)

    Article  CAS  Google Scholar 

  • Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., Yang, W., Song, H., Meng, Q.: Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 38, 6494–6502 (2013)

    Article  CAS  Google Scholar 

  • Karadas, F., Yavuz, C.T., Zulfiqar, S., Aparicio, S., Stucky, G.D., Atilhan, M.: CO2 adsorption studies on hydroxy metal carbonates M(CO3)x(OH)y (M = Zn, Zn–Mg, Mg, Mg–Cu, Cu, Ni, and Pb) at high pressures up to 175 bar. Langmuir 27, 10642–10647 (2011)

    Article  CAS  Google Scholar 

  • Ketzer, J.M., Iglesias, R., Einloft, S.: Reducing greenhouse gas emissions with CO2 capture and geological storage. In: Chen, W.-Y. (ed.) Handbook of climate change mitigation, pp. 1405–1440. Springer, US (2012)

    Chapter  Google Scholar 

  • Klaehn, J.R., Orme, C.J., Peterson, E.S., Stewart, F.F., Urban, J.M.: Chapter 13: high temperature gas separations using high performance polymers. In: Oyama, S.T., Susan, M.S.-W. (eds.) Membrane science and technology, pp. 295–307. Elsevier, New York (2011)

    Google Scholar 

  • Krishnan, G., Steele, D., O’Brien, K., Callahan, R., Berchtold, K., Figueroa, J.: Simulation of a process to capture CO2 from IGCC syngas using a high temperature PBI membrane. Energy Procedia 1, 4079–4088 (2009)

    Article  CAS  Google Scholar 

  • Krutka, H., Sjostrpm, S., Starns, T., Dillon, N., Silverman, R.: Post-combustion CO2 capture using solid sorbents: 1 MW Pilot Evaluation. Energy Procedia 37, 73–88 (2013)

    Article  CAS  Google Scholar 

  • Kumar, S., Cho, J.H., Moon, I.: Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology—A review. Int. J. Greenhouse Gas Control 20, 87–116 (2014)

    Article  CAS  Google Scholar 

  • Kumbharkar, S.C., Islam, M.N., Potrekar, R.A., Kharul, U.K.: Variation in acid moiety of polybenzimidazoles: investigation of physico-chemical properties towards their applicability as proton exchange and gas separation membrane materials. Polymer 50, 1403–1413 (2009)

    Article  CAS  Google Scholar 

  • Kumbharkar, S.C., Li, K.: Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties. J. Membr. Sci. 415–416, 793–800 (2012)

    Article  Google Scholar 

  • Kumbharkar, S.C., Liu, Y., Li, K.: High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. J. Membr. Sci. 375, 231–240 (2011)

    Article  CAS  Google Scholar 

  • Li, J.R., Ma, Y., McCarthy, M.C., Sculley, J., Yu, J., Jeong, H.K., Balbuena, B., Zhou, H.C.: Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255, 1791–1823 (2011)

    Article  CAS  Google Scholar 

  • Li, S., Shi, Y., Yang, Y., Cai, N.: Elevated pressure CO2 adsorption characteristics of promoted hydrotalcites for pre-combustion carbon capture. Energy Procedia 37, 2224–2231 (2013)

    Article  CAS  Google Scholar 

  • Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R., Liu, J.: Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012)

    Article  CAS  Google Scholar 

  • Lobato, J., Cañizares, P., Rdrigo, M.A., Linares, J.J., Ubeda, D., Pinar, F.J.: Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support. Fuel Cells 10, 312–319 (2010)

    Article  CAS  Google Scholar 

  • Lu, W., Sculley, J.P., Yuan, D., Krishna, Z., Wei, Z., Zhou, H.C.: Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem. Int. Ed. 51, 7480–7484 (2012)

    Article  CAS  Google Scholar 

  • Markewitz, P., Kuckhinrichs, R., Leitner, W., Linseen, J., Zapp, R., Bongarts, R., Schreiber, A., Muller, T.E.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012)

    Article  CAS  Google Scholar 

  • Maroño, M., Torreiro, Y., Montenegro, L., Sámchez, J.: Lab-scale tests of different materials for the selection of suitable sorbents for CO2 capture with H2 production in IGCC processes. Fuel 116, 861–870 (2014)

    Article  Google Scholar 

  • Mulfort, K.L., Farha, O.K., Malliakas, C.D., Kanatzidis, M.G., Hupp, J.T.: An interpenetrated framework material with hysteretic CO2 uptake. Chem A Eur J 16, 276–281 (2010)

    Article  CAS  Google Scholar 

  • Munoz, D.M., Portugal, A.F., Lozano, A.E., de la Campa, J.G., de Abajo, J.: New liquid absorbents for the removal of CO2 from gas mixtures. Energy Environ. Sci. 2, 883–891 (2009)

    Article  CAS  Google Scholar 

  • Muradov, N.Z., Veziroǧlu, T.N.: From hydrocarbon to hydrogen–carbon to hydrogen economy. Int. J. Hydrogen Energy 30, 225–237 (2005)

    Article  CAS  Google Scholar 

  • Musto, P., Karasz, F.E., MacKnight, W.J.: Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend. Polymer 34, 2934–2945 (1993)

    Article  CAS  Google Scholar 

  • O’Brien, K.C., Krishnan, G., Berchtold, K.A., Blum, S., Callahan, R., Johnson, W., Roberts, D.L., Steele, D., Byard, D., Figueroa, J.: Towards a pilot-scale membrane system for pre-combustion CO2 separation. Energy Procedia 1, 287–294 (2009)

    Article  Google Scholar 

  • Ogunlaja, A.S., Sautoy, C.D., Torto, N., Tshentu, Z.R.: Design, fabrication and evaluation of intelligent sulfone-selective polybenzimidazole nanofibers. Talanta 126, 61–72 (2014)

    Article  CAS  Google Scholar 

  • Patel, H.A., Hyun Je, S., Park, J., Chen, D.P., Jung, Y., Yavuz, C.T., Coskun, A.: Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat Commun 4, 1357 (2013)

    Article  Google Scholar 

  • Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24, 1511–1517 (2012a)

    Article  CAS  Google Scholar 

  • Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24(8), 1511–1517 (2012b)

    Article  CAS  Google Scholar 

  • Sannigrahi, A., Ghosh, S., Maity, S., Jana, J.: Structurally isomeric monomers directed copolymerization of polybenzimidazoles and their properties. Polymer 51, 5929–5941 (2010)

    Article  CAS  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., Sanz, E.S.: Development of high efficiency absorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 1, 1956–1962 (2013)

    Article  CAS  Google Scholar 

  • Seema, H., Kemp, K.C., Le, N.H., Park, S.W., Chandra, V.: Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 66, 320–326 (2014)

    Article  CAS  Google Scholar 

  • Sekizkardes, A.K., Altarawneh, S., Kahveci, Z., İslamoğlu, T., El-Kaderi, H.M.: Highly selective CO2 capture by triazine-based benzimidazole-linked polymers. Macromolecules 47, 8328–8334 (2014)

    Article  CAS  Google Scholar 

  • Su, J., Pu, H., Chang, Z., Wan, D.: A facile crosslinking method of polybenzimidazole with sulfonyl azide groups for proton conducting membranes. Polymer 53, 3587–3593 (2012)

    Article  CAS  Google Scholar 

  • Suryani, C.C.M., Liu, Y.L., Lee, Y.M.: Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J. Mater. Chem. 21, 7480–7486 (2011)

    Article  CAS  Google Scholar 

  • Tzimas, E., Peteves, S.D.: The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term. Energy 30, 2672–2689 (2005)

    Article  Google Scholar 

  • Valtcheva, I., Kumbharkar, S.C., Kim, F.C., Bhole, Y., Livingston, A.G.: Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J. Membr. Sci. 457, 62–72 (2014)

    Article  CAS  Google Scholar 

  • Veselovskaya, J.V., Derevschikov, V.S., Kardash, T.Y., Stonkus, O.A., Trubitsina, T.A., Okunev, A.G.: Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int. J. Greenhouse Gas Control 17, 332–340 (2013)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Ravikovitch, I., Neimark, A.V.: Molecular level models for CO2 sorption in nanopores. Langmuir 15, 8736–8742 (1999)

    Article  CAS  Google Scholar 

  • Wang, K.Y., Chung, T.S.: Polybenzimidazole nanofiltration hollow fiber for cephalexin separation. AIChE J. 52, 1363–1377 (2006)

    Article  CAS  Google Scholar 

  • Weber, J., Kreiuer, K.D., Maier, J., Thomas, A.: Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv. Mater. 20, 2595–2598 (2008a)

    Article  CAS  Google Scholar 

  • Weber, J., Antonietti, M., Thomas, A.: Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres. Macromolecules 40, 1299–1304 (2007)

    Article  CAS  Google Scholar 

  • Weber, J., Antonietti, M., Thomas, A.: Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41, 2880–2885 (2008b)

    Article  CAS  Google Scholar 

  • Xiang, Z., Zhou, X., Zhou, C., Zhong, S., He, X., Qin, C., Cao, D.: Covalent-organic polymers for carbon dioxide capture. J. Mater. Chem. 22(42), 22663–22669 (2012)

    Article  CAS  Google Scholar 

  • Xiao, L., Zhang, H., Scanlon, E., Ramanathan, L.S., Choe, E.W., Rogers, D., Apple, T., Benicewicz, B.C.: High-temperature polybenzimidazole fuel cell membranes via a sol: gel process. Chem. Mater. 17, 5328–5333 (2005)

    Article  CAS  Google Scholar 

  • Xu, C., Hedin, N.: Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J. Mater. Chem. A 1, 3406–3414 (2013)

    Article  CAS  Google Scholar 

  • Yang, T., Chung, T.S.: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrogen Energy 38, 229–239 (2013)

    Article  CAS  Google Scholar 

  • Yang, T., Xiao, Y., Chung, T.S.: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy Environ. Sci. 4, 4171–4180 (2011)

    Article  CAS  Google Scholar 

  • Yu, H., Tian, M., Shen, C., Wang, Z.: Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym. Chem. 4, 961–968 (2013)

    Article  CAS  Google Scholar 

  • Zhang, M., Perry, Z., Park, J., Zhou, H.C.: Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and low cost. Polymer 55, 335–339 (2014)

    Article  CAS  Google Scholar 

  • Zhang, X.-J., Bian, N., Mao, L.J., Chen, Q., Fang, L., Qi, A.D., Han, B.H.: Porous polybenzimidazoles via template-free suzuki coupling polymerization: preparation, porosity, and heterogeneous catalytic activity in knoevenagel condensation reactions. Macromol. Chem. Phys. 213, 1575–1581 (2012)

    Article  CAS  Google Scholar 

  • Zhao, Y.-C., Cheng, Q.Y., Zhou, D., Wang, T., Han, B.H.: Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J. Mater. Chem. 22, 11509–11514 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was made possible by the support of an NPRP grant (No: 5-499-1-088) from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mert Atilhan, Santiago Aparicio or Cafer T. Yavuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, R., Atilhan, M., Diab, A. et al. Synthesis, characterization and evaluation of porous polybenzimidazole materials for CO2 adsorption at high pressures. Adsorption 22, 247–260 (2016). https://doi.org/10.1007/s10450-016-9762-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9762-4

Keywords

Navigation