Skip to main content
Log in

An H1 convergence of the spectral method for the time-fractional non-linear diffusion equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The generalized discrete Gronwall inequality is applied to analyze the optimal H1 error estimate of the time-stepping spectral method for the time-fractional diffusion equations, where the time-fractional derivative is discretized by the second-order fractional backward difference formula or the second-order generalized Newton-Gregory formula. The methodology is extended to analyze the fractional Crank–Nicolson spectral method and the time-stepping spectral method for the multi-term time-fractional differential equations. Numerical simulations are provided to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Al-Maskari, M., Karaa, S.: Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 57(3), 1524–1544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banjai, L., López-Fernández, M.: Efficient high order algorithms for fractional integrals and fractional differential equations. Numer. Math. 141(2), 289–317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods. Scientific Computation. Springer, Berlin. Fundamentals in single domains (2006)

  9. Chen, C., Thomée, V., Wahlbin, L.B.: Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comp. 58(198), 587–602 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, L., Zhang, J., Zhao, J., Cao, W., Wang, H., Zhang, J.: An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection. Comput. Phys. Commun. 245, 106–842 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cuesta, E., Lubich, C. h., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75 (254), 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Carvalho-Neto, P.M., Júnior, R. F.: On the fractional version of Leibniz rule. Math. Nachr. 293, 670–700 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. González, C., Palencia, C.: Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: the Hölder case. Math. Comp. 68 (225), 73–89 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, L., Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: Efficient multistep methods for tempered fractional calculus: algorithms and simulations. SIAM J. Sci. Comput. 41(4), A2510–A2535 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, C., Stynes, M.: Optimal h1 spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation. Adv. Comput. Math. 46(4), 46–63 (2020)

    Article  MATH  Google Scholar 

  17. Huang, C., Stynes, M.: Optimal spatial h1-norm analysis of a finite element method for a time-fractional diffusion equation. J. Comput. Appl. Math. 367(112), 435 (2020)

    Google Scholar 

  18. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  19. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comp. 88, 2157–2186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, B., Li, B., Zhou, Z.: Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping. Numer. Math. 145, 883–913 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker-Planck equation with general forcing. SIAM J. Numer. Anal. 54 (3), 1763–1784 (2016)

  24. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959C–1977 (2013)

  25. Li, B., Wang, H., Wang, J.: Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order. ESAIM: Math. Model. Numer. Anal. 55, 171–207 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: mathematical analysis. Appl. Numer. Math. 150, 587–606 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80(1), 403–419 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liao, H.l., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao, H.l., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, H.l., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414(16), 109,473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Z., Li, X.: A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation. Comput. Methods Appl. Mech. Engrg. 308, 330–348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren, J., Liao, H.L., Zhang, J., Zhang, Z.: Sharp H1,-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. arXiv:1811.08059 (2018)

  38. Stojanović, M., Gorenflo, R.: Nonlinear two-term time fractional diffusion-wave problem. Nonlinear Anal. Real World Appl. 11(5), 3512–3523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, J., Nie, D., Deng, W.: Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative. Appl. Numer. Math. 145, 384–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, D., Zou, J.: Dissipativity and contractivity analysis for fractional functional differential equations and their numerical approximations. SIAM J. Numer. Anal. 57(3), 1445–1470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, K., Zhou, Z.: High-order time stepping schemes for semilinear subdiffusion equations. SIAM J. Numer. Anal. 58(6), 3226–3250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, Y., Zeng, F.: Numerical analysis of linear and nonlinear time-fractional subdiffusion equations. Commun. Appl. Math. Comput. 1(4), 621–637 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations. SIAM J. Sci. Comput. 40(5), A2986–A3011 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Engrg. 327(1), 478–502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, H., Zeng, F., Jiang, X., Karniadaki, G.E.: Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. arXiv:2007.07015 (2020)

  49. Zhu, H., Xu, C.: A fast high order method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 57(6), 2829–2849 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the editor for taking time to handle the manuscript and the anonymous referees’ comments that greatly improved the quality of this paper.

Funding

This work has been supported by the National Natural Science Foundation of China (Grants Nos.12001326, 11771254, 12171283, 12120101001), Natural Science Foundation of Shandong Province (Grants No. ZR2019ZD42), China Postdoctoral Science Foundation (Grant No. BX20190191, 2020M672038), and Start Up Fund Support of Shandong University (Grant No. 11140082063130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhai Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Bangti Jin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix

A Proof of \(d^{\varepsilon }_{n}\geq 0\) for FBDF-2

Proof

It is very easy to obtain b(α)(z) = (3/2 − z/2)α and \(b^{(\alpha )}_{n}=b^{(\alpha )}_{0}3^{-n}{a}^{(\alpha )}_{n}\), where \(a^{(\alpha )}_{n}=\frac {{\varGamma }(n+\alpha )}{{\varGamma }(\alpha ){\varGamma }(n+1)}\), \(b^{(\alpha )}_{0} = ({3}/{2})^{\alpha }\), and

$$ \begin{array}{@{}rcl@{}} B_{0}={\sum}_{n=0}^{\infty}{b}^{(\alpha)}_{n}=b^{(\alpha)}_{0} ({2}/{3})^{\alpha}=1. \end{array} $$
(86)

Then, \(d^{\varepsilon }_{n}\) can be expressed by

$$ \begin{aligned} d^{\varepsilon}_{n}=& (B_{0} -\varepsilon){a}^{(-\alpha)}_{n} +{\sum}_{j=0}^{n}b^{(\alpha)}_{j}{a}^{(-\alpha)}_{n-j}\\ =& (1+b^{(\alpha)}_{0}-\varepsilon){a}^{(-\alpha)}_{n} +b^{(\alpha)}_{0}{\sum}_{j=1}^{n}3^{-j}{a}^{(\alpha)}_{j}{a}^{(-\alpha)}_{n-j} \end{aligned} $$
(87)

Using \({a}^{(\alpha )}_{j}\leq 0\) and (??), we have

$$ \begin{aligned} {\sum}_{j=1}^{n}3^{-j}{a}^{(\alpha)}_{j}{a}^{(-\alpha)}_{n-j} \geq& \frac{1}{3}{\sum}_{j=1}^{n} {a}^{(\alpha)}_{j} {a}^{(-\alpha)}_{n-j} =-\frac{1}{3}{a}^{(-\alpha)}_{n},\quad n\geq 1. \end{aligned} $$
(88)

Combining (2)–(3) and choosing \(\varepsilon =\frac {2}{3}b^{(\alpha )}_{0}=(3/2)^{\alpha -1}\) yields

$$ \begin{aligned} &d^{\varepsilon}_{0} =b^{(\alpha)}_{0}+1-\varepsilon=1+b^{(\alpha)}_{0}/3\geq 4/3,\\ &d^{\varepsilon}_{n}\geq \left( b^{(\alpha)}_{0}+1 -\varepsilon- b^{(\alpha)}_{0}/3\right){a}^{(-\alpha)}_{n} ={a}^{(-\alpha)}_{n}\geq0,\quad n \geq 1. \end{aligned} $$
(89)

The proof is complete. □

B Proof of \(d^{\varepsilon }_{n}\geq 0\) for GNGF-2

Proof

For the GNGF-2, we have \(b^{(\alpha )}_{0}=1+\alpha /2,b^{(\alpha )}_{1}=-\alpha /2\), \(b^{(\alpha )}_{n}=0\) for n > 1, and B0 = 1.

Letting ε = 1/2 yields \(d^{\varepsilon }_{0}=1/2+b^{(\alpha )}_{0}=(3+\alpha )/2>0\). For n ≥ 1, we have

$$ \begin{aligned} d^{\varepsilon}_{n}=& (B_{0} -\varepsilon){a}^{(-\alpha)}_{n} + \left( b^{(\alpha)}_{0}{a}^{(-\alpha)}_{n} + {b}^{(\alpha)}_{1}{a}^{(-\alpha)}_{n-1}\right)\\ =&\left( \frac{3+\alpha}{2} - \frac{\alpha}{2}\frac{n}{n-1+\alpha}\right){a}^{(-\alpha)}_{n}\\ \geq&\left( \frac{3+\alpha}{2}-\frac{\alpha}{2}\frac{1}{\alpha}\right){a}^{(-\alpha)}_{n} =\frac{2+\alpha}{2}{a}^{(-\alpha)}_{n}\geq 0, \end{aligned} $$
(90)

where \(\frac {{a}^{(-\alpha )}_{n}}{{a}^{(-\alpha )}_{n-1}}=\frac {n-1+\alpha }{n}\). The proof is completed. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jiang, X. & Zeng, F. An H1 convergence of the spectral method for the time-fractional non-linear diffusion equations. Adv Comput Math 47, 63 (2021). https://doi.org/10.1007/s10444-021-09892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09892-5

Keywords

Mathematics Subject Classification (2010)

Navigation