Skip to main content

Advertisement

Log in

Optimal frame designs for multitasking devices with weight restrictions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let \(\mathbf d=(d_{j})_{j\in \mathbb {I}_{m}}\in \mathbb {N}^{m}\) be a finite sequence (of dimensions) and \(\alpha =(\alpha _{i})_{i\in \mathbb {I}_{n}}\) be a sequence of positive numbers (of weights), where \(\mathbb {I}_{k}=\{1,\ldots ,k\}\) for \(k\in \mathbb {N}\). We introduce the (α, d)-designs, i.e., m-tuples \({\Phi }=(\mathcal F_{j})_{j\in \mathbb {I}_{m}}\) such that \(\mathcal F_{j}=\{f_{ij}\}_{i\in \mathbb {I}_{n}}\) is a finite sequence in \(\mathbb {C}^{d_{j}}\), \(j\in \mathbb {I}_{m}\), and such that the sequence of non-negative numbers \((\|f_{ij}\|^{2})_{j\in \mathbb {I}_{m}}\) forms a partition of αi, \(i\in \mathbb {I}_{n}\). We characterize the existence of (α, d)-designs with prescribed properties in terms of majorization relations. We show, by means of a finite step algorithm, that there exist (α, d)-designs \({\Phi }^{\text {op}}=(\mathcal {F}_{j}^{\text {op}})_{j\in \mathbb {I}_{m}}\) that are universally optimal; that is, for every convex function \(\varphi :[0,\infty )\rightarrow [0,\infty )\), then Φop minimizes the joint convex potential induced by φ among (α, d)-designs, namely

$ \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}^{\text {op}})\leq \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}) $

for every (α, d)-design \({\Phi }=(\mathcal F_{j})_{j\in \mathbb {I}_{m}}\), where \(\text {P}_{\varphi }(\mathcal F)=\text {tr}(\varphi (S_{\mathcal {F}}))\); in particular, Φop minimizes both the joint frame potential and the joint mean square error among (α, d)-designs. We show that in this case, \(\mathcal {F}_{j}^{\text {op}}\) is a frame for \(\mathbb {C}^{d_{j}}\), for \(j\in \mathbb {I}_{m}\). This corresponds to the existence of optimal encoding-decoding schemes for multitasking devices with energy restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur-Horn theorem for operators and frames with prescribed norms and frame operator. Illinois J. Math. 51, 537–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benac, M.J., Massey, P., Stojanoff, D.: Convex potentials and optimal shift generated oblique duals in shift invariant spaces. J. Fourier Anal. Appl. 23(2), 401–441 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benac, M.J., Massey, P., Stojanoff, D.: Frames of translates with prescribed fine structure in shift invariant spaces. J. Funct. Anal. 271(9), 2631–2671 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Frames. Adv. Comput. Math. 18(2-4), 357–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  6. Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4(2), 129–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casazza, P.G.: Custom building finite frames. In: Wavelets, Frames and Operator Theory, Volume 345 of Contemp, pp 61–86. Math., Amer. Math. Soc., Providence (2004)

  9. Casazza, P.G., Fickus, M., Kovacevic, J., Leon, M.T., Tremain, J.C.: A Physical Interpretation of Tight Frames. Harmonic Analysis and Applications. Appl. Numer. Harmon. Anal., pp 51–76. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  10. Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35, 52–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casazza, P.G., Leon, M.T.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63(2), 149–157 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Casazza, P.G., Kutyniok, G. (eds.): Finite Frames: Theory and Applications. Birkhauser, Boston (2012). xii + 483 pp

  13. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2003). xxii+ 440 pp

    MATH  Google Scholar 

  14. Dhillon, I.S., Heath, R.W. Jr., Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27(1), 61–71 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dykema, K., Freeman, D., Kornelson, K., Larson, D., Ordower, M., Weber, E.: Ellipsoidal tight frames and projection decomposition of operators. Illinois J. Math. 48, 477–489 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, D.J., Wang, L., Wang, Y.: Generation of finite tight frames by Householder transformations. Adv. Comput. Math. 24, 297–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fickus, M., Marks, J., Poteet, M.: A generalized Schur-Horn theorem and optimal frame completions. Appl. Comput. Harmon. Anal. 40(3), 505–528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fickus, M., Mixon, D.G., Poteet, M.J.: Frame completions for optimally robust reconstruction. In: Proceedings of SPIE 8138: 81380Q/1-8 (2011)

  19. Hassibi, B., Sharif, M.: Fundamental limits in MIMO broadcast channels. IEEE J. Selected Areas Commun. 25(7), 1333–1344 (2007)

    Article  Google Scholar 

  20. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kornelson, K.A., Larson, D.R.: Rank-One Decomposition of Operators and Construction of Frames. Wavelets, Frames and Operator Theory, Contemp. Math., vol. 345, pp 203–214. Amer. Math. Soc., Providence (2004)

    MATH  Google Scholar 

  22. Massey, P., Rios, N., Stojanoff, D.: Frame completions with prescribed norms: Local minimizers and applications. Adv. Comput. Math. (in press)

  23. Massey, P., Ruiz, M.A.: Tight frame completions with prescribed norms. Sampl. Theory Signal Image Process. 7(1), 1–13 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Massey, P., Ruiz, M.: Minimization of convex functionals over frame operators. Adv. Comput. Math. 32(2), 131–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Massey, P., Ruiz, M., Stojanoff, D.: Optimal dual frames and frame completions for majorization. Appl. Comput Harmon. Anal. 34(2), 201–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Massey, P.G., Ruiz, M.A., Stojanoff, D.: Optimal frame completions. Adv. Comput. Math. 40, 1011–1042 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Massey, P., Ruiz, M., Stojanoff, D.: Optimal frame completions with prescribed norms for majorization. J. Fourier Anal. Appl. 20(5), 1111–1140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for several comments and suggestions that helped us to improve the contents of this manuscript.

Funding

This study was partially supported by CONICET (PICT ANPCyT 1505/15) and Universidad Nacional de La Plata (UNLP 11X829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrio Stojanoff.

Additional information

Communicated by: Holger Rauhut

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benac, M.J., Massey, P., Ruiz, M. et al. Optimal frame designs for multitasking devices with weight restrictions. Adv Comput Math 46, 22 (2020). https://doi.org/10.1007/s10444-020-09762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09762-6

Keywords

Mathematics Subject Classifications (2010)

Navigation