Skip to main content
Log in

Optimal convergence orders of fully geometric mesh one-leg methods for neutral differential equations with vanishing variable delay

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to obtain the error bounds of fully geometric mesh one-leg methods for solving the nonlinear neutral functional differential equation with a vanishing delay. For this purpose, we consider Gq-algebraically stable one-leg methods which include the midpoint rule as a special case. The error of the first-step integration implemented by the midpoint rule on [0,T0] is first estimated. The optimal convergence orders of the fully geometric mesh one-leg methods with respect to T0 and the mesh diameter \(h_{\max }\) are then analyzed and provided for such equation. Numerical studies reported for several test cases confirm our theoretical results and illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellen, A., Guglielmi, N., Torelli, L.: Asymptotic stability properties of 𝜃-methods for the pantograph equation. Appl. Numer. Math. 24, 279–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellen, A.: Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay, IMA. J. Numer. Anal. 22, 529–536 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  4. Bellen, A., Brunner, H., Maset, S., Torelli, L.: Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanshing delays. BIT 46, 229–247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bocharov, G. A., Rihan, F. A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125, 183–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Brunner, H., Hu, Q. Y., Lin, Q.: Geometric meshes in collocation methods for Volterra integral equations with proportional delays, IMA. J. Numer. Anal. 21, 783–798 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buhmann, M.D., Iserles, A.: Stability of the discretized pantograph differential equation. Math. Comput. 60, 575–589 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahlquist, G.D.: Some properties of linear multistep and one-leg methods for ordinary differential equations, Report TRITA-NA-7904, (1979), Royal Inst. Of Tech. Stockholm

  10. Dahlquist, G.D., Liniger, W., Nevanlinna, O.: Stability of two-step methods for variable integration steps. SIAM J. Numer. Math. 20, 1071–1085 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guglielmi, N., Zennaro, M.: Stability of one-leg 𝜃-methods for the variable coefficient pantograph equation on the quasi-geometric mesh, IMA. J. Numer. Anal. 23, 421–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Q.: Geometric meshes and their application to Volterra integro-differential equations with singularities. IMA J. Numer. Anal. 18, 151–164 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, C.M., Vandewalle, S.: Discretized stability and error growth of the non-autonomous pantograph equation. SIAM J. Numer. Anal. 42, 2020–2042 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Q.M., Xu, X.X., Brunner, H.: Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete Contin. Dyn. Syst. 36, 5423–5443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hundsdorfer, W.H., Steininger, B.I.: Convergence of linear multistep and one-leg methods for stiff nonlinear initial value problems. BIT 31, 124–143 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jackiewicz, Z.: Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equations. SIAM J. Numer. Anal. 23, 423–452 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jackiewicz, Z., Lo, E.: Numerical solution of neutral functional differential equations by Adams methods in divided difference form. J. Comput. Appl. Math. 189, 592–605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolmanovskii, V.B., Myshkis, A.: Introduction to the theory and applications of functional differential equations. Kluwer Academy, Dordrecht (1999)

    Book  MATH  Google Scholar 

  19. Liu, Y.K.: On the 𝜃–methods for delay differential equations with infinite lag. J. Comput. Appl. Math. 71, 177–190 (1996)

    Article  MathSciNet  Google Scholar 

  20. Ma, S.F., Yang, Z.W., Liu, M.Z.: H α −stability of modified Runge-Kutta methods for nonlinear neutral pantograph equations. J. Math. Anal. Appl. 335, 1128–1142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matache, A., Schwab, C., Wihler, T.P.: Fast numerical solution of parabolic integro-differential equations with applications in finance. IMA preprint Series (2004)

  22. Wang, W.S., Li, S.F.: On the one-leg 𝜃-methods for solving nonlinear neutral functional differential equations. Appl. Math. Comput. 193, 285–301 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Wang, W.S., Zhang, Y., Li, S.F.: Nonlinear stability of one-leg methods for delay differential equations of neutral type. App. Numer. Math. 58, 122–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W.S., Li, S.F.: Stability analysis of 𝜃-methods for nonlinear neutral functional differential equations. SIAM J. Sci. Comput. 30, 2181–2205 (2008)

    Article  MathSciNet  Google Scholar 

  25. Wang, W.S., Zhang, C.J.: Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space. Numer. Math. 115, 451–474 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, W.S., Li, S.F.: On the one-leg methods for solving nonlinear neutral differential equations with variable delay, J. Appl. Math., 2012 (2012)

  27. Wang, W.S.: Stability of Runge-Kutta methods for the generalized pantograph equation on the fully-geometric mesh. Appl. Math. Model. 39, 270–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, W.S., Li, S.F., Yang, Y.S.: Contractivity and exponential stability of solutions to nonlinear neutral functional differential equations in Banach spaces. Acta Math. Appl. Sinica, Eng. Ser. 28, 289–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, W.S., Fan, Q., Zhang, Y., Li, S.F.: Asymptotic stability of solution to nonlinear neutral and Volterra functional differential equations in Banach spaces. Appl. Math. Comput. 237, 217–226 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Wang, W.S.: Fully-geometric mesh one-leg methods for the generalized pantograph equation: approximating Lyapunov functional and asymptotic contractivity. Appl. Numer. Math. 117, 50–68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: hp-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190, 6685–6708 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, J.J., Xu, Y., Wang, H.X., Liu, M.Z.: Stability of a class of Runge-Kutta methods for a family of pantograph equations of neutral type. Appl. Math. Comput. 181, 1170–1181 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for the valuable comments that lead to great improvements in the presentation of this paper; especially thank the referees for bringing us to interest in NFDEs with a vanishing delay and NFDEs with state-dependent delay.

Funding

This work was supported by the Natural Science Foundation of China (Grant No. 11771060, 11371074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng Wang.

Additional information

Communicated by: Zydrunas Gimbutas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W. Optimal convergence orders of fully geometric mesh one-leg methods for neutral differential equations with vanishing variable delay. Adv Comput Math 45, 1631–1655 (2019). https://doi.org/10.1007/s10444-019-09688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09688-8

Keywords

Mathematics Subject Classification (2010)

Navigation