Skip to main content
Log in

Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We show that the sparse polynomial interpolation problem reduces to a discrete super-resolution problem on the n-dimensional torus. Therefore, the semidefinite programming approach initiated by Candès and Fernandez-Granda (Commun. Pure Appl. Math. 67(6) 906–956, 2014) in the univariate case can be applied. We extend their result to the multivariate case, i.e., we show that exact recovery is guaranteed provided that a geometric spacing condition on the supports holds and evaluations are sufficiently many (but not many). It also turns out that the sparse recovery LP-formulation of 1-norm minimization is also guaranteed to provide exact recovery provided that the evaluations are made in a certain manner and even though the restricted isometry property for exact recovery is not satisfied. (A naive sparse recovery LP approach does not offer such a guarantee.) Finally, we also describe the algebraic Prony method for sparse interpolation, which also recovers the exact decomposition but from less point evaluations and with no geometric spacing condition. We provide two sets of numerical experiments, one in which the super-resolution technique and Prony’s method seem to cope equally well with noise, and another in which the super-resolution technique seems to cope with noise better than Prony’s method, at the cost of an extra computational burden (i.e., a semidefinite optimization).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azaïs, J.-M., de Castro, Y., Gamboa, F.: Spike detection from inaccurate samplings. Appl. Comput. Harmon. Anal. 38(2), 177–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 301–309. ACM (1988)

  3. Berlekamp, E.R.: Nonbinary BCH decoding. IEEE Trans. Inf. Theory 14(2), 242–242 (1968)

    Article  Google Scholar 

  4. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19(1), 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Acad. Sci. Paris Ser. I 346, 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E.J., Carlos, F.-G.: Super-resolution from noisy data. J. Fourier Anal. Appl. 19(6), 1229–1254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E.J., Plan, Y.: A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Inform. Theory 51(12), 4203–4215 (2014). 2005

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Curto, R.E., Fialkow, L.A.: Truncated K-moment problems in several variables. J. Operator Theory 54, 189–226 (2005)

    MathSciNet  MATH  Google Scholar 

  13. de Baron de Prony, G.R.: Essai expérimental et analytique: Sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alcool, à différentes températures. J. Ecole Polyt. 1, 24–76 (1795)

    Google Scholar 

  14. Cuyt, A., Lee, W.-S.: Sparse interpolation and rational approximation. In: Hardin, D., Lubinsky, D., Simanek, B., et al. (eds.) Contemporary Mathematics, vol. 661, pp 229–242. American Mathematical Society, Providence (2016)

  15. De Castro, Y., Gamboa, F., Henrion, D., Lasserre, J.-B.: Exact solutions to super-resolution on semi-algebraic domains in higher dimensions. IEEE Trans. Inform. Theory 63, 621–630 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dantzig, G.B., Thapa, M.N.: Linear programming 1: Introduction. Springer-verlag New York Inc., New York (1997)

    MATH  Google Scholar 

  17. Duval, V., Peyré, G.: Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15(5), 1315–1355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan, Y.Y., Kamath, C.: A comparison of compressed sensing and sparse recovery algorithms applied to simulation data. Stat. Optim. Inform. Computing 4, 194–213 (2016)

    MathSciNet  Google Scholar 

  19. Filbir, F., Schröder, K.: Exact recovery of discrete measures from Wigner D-moments. arXiv:1606.05306 (2016)

  20. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic–numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44(8), 943–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golub, G., Pereyra, V.: Separable nonlinear least squares: The variable projection method and its applications. Inverse Prob. 19(2), R1–R26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grigoriev, D.Y., Karpinski, M., Singer, M.F.: Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. Comput. 19 (6), 1059–1063 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harmouch, J., Khalil, H., Mourrain, B.: Structured Low Rank Decomposition of Multivariate Hankel Matrices. Linear Algebra and its Applications (2017)

  24. Hassanieh, Hitham, Indyk, Piotr, Katabi, Dina, Price, Eric: Nearly optimal sparse Fourier transform. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pp. 563–578. ACM Press (2012)

  25. Josz, C., Molzahn, D.K.: Large Scale Complex Polynomial Optimization. arXiv:1508.02068

  26. Kaltofen, E., Lakshman, Y.N.: Sparse multivariate polynomial interpolation algorithms. In: Proceedings of the International Symposium ISSAC’88 on Symbolic and Algebraic Computation, ISSAC ’88, pp 467–474. Springer, London (1989)

  27. Kaltofen, E.L., Lee, W.-S., Yang, Z.: Fast Estimates of Hankel Matrix Condition Numbers and Numeric Sparse Interpolation, pp 130–136. ACM Press, New York (2011)

    MATH  Google Scholar 

  28. Krasovskii, N.N.: Theory of Motion Control. Moscow, Nauka (1968). (in Russian)

    Google Scholar 

  29. Kunis, S., Peter, T., Römer, T., von der Ohe, U.: A multivariate generalization of Prony’s method. Linear Algebra Appl. 490, 31–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laurent, M., Mourrain, B.: A generalized flat extension theorem for moment matrices. Arch. Math. 93(1), 87–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mourrain, B.: Polynomial-exponential decomposition from moments. Found. Comput. Math. 18(6), 1435–1492 (2018). https://doi.org/10.1007/s10208-017-9372-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Neustadt, L.W.: Optimization, a moment problem, and nonlinear programming. Journal of the Society for Industrial and Applied Mathematics Series A Control 2(1), 33–53 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nie, J.: Optimality conditions and finite convergence of Lasserre?s hierarchy. Math. Program. Ser Optimality A 146(1-2), 97–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pereyra, V., Scherer, G., et al.: Exponential Data Fitting and Its Applications. Bentham Science Publishers, Sharjah (2012)

    Book  Google Scholar 

  36. Poon, C., Peyré, G.: Multi-dimensional sparse super-resolution. SIAM J. Math. Anal. 51(1), 1–44 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Potts, D., Tasche, M.: Nonlinear approximation by sums of nonincreasing exponentials. Appl. Anal. 90(3-4), 609–626 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Richard, R., Kailath, T.: ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  39. Rudin, W.: Real and Complex Analysis. McGraw-Hill Education, New York (1986)

    MATH  Google Scholar 

  40. Sauer, T.: Prony’s method in several variables. Numer. Math. 136(2), 411–438 (2017). https://doi.org/10.1007/s00211-016-0844-8

    Article  MathSciNet  MATH  Google Scholar 

  41. Stoica, P., Moses, R.L.: Spectral Analysis of Signals. Pearson/prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  42. Lee Swindlehurst, A., Kailath, T.: A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm. IEEE Trans. Signal Process. 40(7), 1758–1774 (1992)

    Article  MATH  Google Scholar 

  43. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pp 216–226. Springer, London (1979)

  44. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comput. 9 (3), 375–403 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Iohvidov, I.S.: Hankel and Toeplitz Matrices and Forms: Algebraic Theory. Birkhäuser Verlag, Boston (1982)

    MATH  Google Scholar 

  46. Comer, M.T., Kaltofen, E.L., Pernet, C.: Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values. In: Proceedings of the Sparse Polynomial International Symposium on Symbolic and Algebraic Computation, ISSAC ’12, pp. 138–145. Grenoble, France. 2012 (2012)

Download references

Acknowledgments

The research of the second author was funded by the European Research Council (ERC) under the European’s Union Horizon 2020 research and innovation program (grant agreement 666981 TAMING).

Funding

The work of the first two authors was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 666981 TAMING).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bernard Lasserre.

Additional information

Communicated by: Jon Wilkening

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Ifz(1),…, z(d)are distinct points of\(\mathbb {C}^{n}\),thenvd− 1(z(1)),…, vd− 1(z(d)) are linearly independent vectors, wherevd(z) := (zα)|αd.

Proof

Consider some complex numbers c1,…, cd such as the following:

$$ \sum\limits_{k = 1}^{d} c_{k} (z^{(k)})^{\alpha} = 0 ~,~~~ \forall |\alpha|\leqslant d-1. $$
(6.1)

Given 1 ≤ ld, define the Lagrange interpolation polynomial as follows:

$$ L^{(l)}(z) := \prod\limits_{\scriptsize \begin{array}{c} 1 \leqslant k \leqslant d \\ k \neq l \end{array}} \frac{ z_{i(k)} - z^{(k)}_{i(k)} }{ z^{(l)}_{i(k)} - z^{(k)}_{i(k)} } $$
(6.2)

where i(k) ∈{1,…, n} is an index such that \(z^{(k)}_{i(k)} \neq z^{(l)}_{i(k)}\). It satisfies L(l)(z(k)) = 1 if k = l and L(l)(z(k)) = 0 if kl. The degree of \(L^{(l)}(z) =: {\sum }_{\alpha } L^{(l)}_{\alpha } z^{\alpha }\) is equal to d − 1. Thus, we may multiply the equation in (6.1) by \(L^{(l)}_{\alpha }\) to obtain the following:

$$ \sum\limits_{k = 1}^{d} c_{k} ~ L^{(l)}_{\alpha} (z^{(k)})^{\alpha} = 0 ~,~~~ \forall |\alpha|\leqslant d-1. $$
(6.3)

Summing over all |α|≤ d − 1 yields \({\sum }_{k = 1}^{d} c_{k} ~ L^{(l)}(z^{(k)}) = c_{l} = 0\). □

Lemma 2

If \(u_{1},\hdots ,u_{d} \in \mathbb {C}^{n}\) are linearly independent, and \(c_{1},\hdots ,c_{d} \in \mathbb {C}\setminus \{0\}\) , then, \(\mathcal {R}({\sum }_{i = 1}^{d} c_{i} u_{i} {u_{i}^{T}}) = \mathcal {R}({\sum }_{i = 1}^{d} c_{i} u_{i} u_{i}^{*}) = \text {span} \{u_{1},\hdots ,u_{d}\}\) where \(\mathcal {R}\) denotes the range.

Proof

If \(z \in \mathbb {C}^{n}\), then, \(({\sum }_{i = 1}^{d} c_{i} u_{i} {u_{i}^{T}})z = {\sum }_{i = 1}^{d} (c_{i} {u_{i}^{T}} z) u_{i} \in \text {span} \{u_{1},\hdots ,u_{d}\}\) and \(({\sum }_{i = 1}^{d} c_{i} u_{i} u_{i}^{*})z = {\sum }_{i = 1}^{d} (c_{i} u_{i}^{*} z) u_{i} \in \text {span} \{u_{1},\hdots ,u_{d}\}\). Conversely, an element of the span \({\sum }_{i = 1}^{d} \lambda _{i} u_{i}\) with \(\lambda _{1},\hdots ,\lambda _{n} \in \mathbb {C}\) belongs to the range of \({\sum }_{i = 1}^{d} c_{i} u_{i} {u_{i}^{T}}\) if there exists \(z\in \mathbb {C}^{n}\) such as the following:

$$ \sum\limits_{i = 1}^{d} \lambda_{i} u_{i} = \left( \sum\limits_{i = 1}^{d} c_{i} u_{i} {u_{i}^{T}} \right) z $$

which is equivalent to each of the next three lines:

$$ \sum\limits_{i = 1}^{d} [ \lambda_{i} - (c_{i} {u_{i}^{T}} z) ] u_{i} = 0, $$
(6.4)
$$ \lambda_{i} = (c_{i} u_{i})^{T} z ~,~ i = 1,\hdots,d, $$
(6.5)
$$ \lambda = (c_{1} u_{1} \hdots c_{d} u_{d} )^{T} z. $$
(6.6)

Since \((c_{1} u_{1} \hdots c_{d} u_{d} ) \in \mathbb {C}^{n \times d}\) has rank d, its transpose has rank d. Thus, there exists a desired \(z \in \mathbb {C}^{n}\). Likewise, \({\sum }_{i = 1}^{d} \lambda _{i} u_{i}\) belongs to the range of \({\sum }_{i = 1}^{d} c_{i} u_{i} u_{i}^{*}\) if there exists \(z\in \mathbb {C}^{n}\) such as the following:

$$ \lambda_{i} = (c_{i} u_{i})^{*} z ~,~ i = 1,\hdots,d. $$

Since \((c_{1} u_{1} \hdots c_{d} u_{d} ) \in \mathbb {C}^{n \times p}\) has rank d, its conjugate transpose has rank d. Thus, there exists a desired \(z \in \mathbb {C}^{n}\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josz, C., Lasserre, J.B. & Mourrain, B. Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?. Adv Comput Math 45, 1401–1437 (2019). https://doi.org/10.1007/s10444-019-09672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09672-2

Keywords

Mathematics Subject Classification (2010)

Navigation