Skip to main content
Log in

Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper extends a conventional, general framework for online adaptive estimation problems for systems governed by unknown or uncertain nonlinear ordinary differential equations. The central feature of the theory introduced in this paper represents the unknown function as a member of a reproducing kernel Hilbert space (RKHS) and defines a distributed parameter system (DPS) that governs state estimates and estimates of the unknown function. Under the assumption that full state measurements are available, this paper (1) derives sufficient conditions for the existence and stability of the infinite dimensional online estimation problem, (2) derives existence and stability of finite dimensional approximations of the infinite dimensional approximations, and (3) determines sufficient conditions for the convergence of finite dimensional approximations to the infinite dimensional online estimates. A new condition for persistency of excitation in a RKHS in terms of its evaluation functionals is introduced in the paper that enables proof of convergence of the finite dimensional approximations of the unknown function in the RKHS. This paper studies two particular choices of the RKHS, those that are generated by exponential functions and those that are generated by multiscale kernels defined from a multiresolution analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wendland, H.: Scattered data approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Baumeister, J., Scondo, W., Demetriou, M.A., Rosen, I.G.: On-line parameter estimation for infinite dimensional dynamical systems. SIAM Journal of Control and Optimisation (1997)

  3. Bohm, M., Demetriou, M.A., Reich, S., Rosen, I.G.: Model reference adaptive control of distributed parameter systems. SIAM Journal of Control and Optimisation (1998)

  4. Chen Y., Dong, W., Zhao, Y., Farrell, J.A.: Tracking control for nonaffine systems: A self-organizing approximation approach. IEEE Transactions on Neural Networks and Learning Systems (2012)

  5. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics (2005)

  6. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robotics Automation Magazine (2006)

  7. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robotics Automation Magazine (2006)

  8. Dissanayake, G., Huang, S., Wang, Z., Ranasinghe, R.: A review of recent developments in simultaneous localization and mapping. 6th International Conference on Industrial and Information Systems (2011)

  9. Dissanayake, G., Durrant-Whyte, H., Bailey, T.: A computationally efficient solution to the simultaneous localisation and map building problem. In: Proceedings 2000 ICRA Millennium Conference (2000)

  10. Huang, S., Dissanayake, G.: Convergence and consistency analysis for extended Kalman filter based SLAM. Trans. Robot. 23(5), 1036–1049 (2007)

    Article  Google Scholar 

  11. Julier, S.J., Uhlmann, J.K.: A counter example to the theory of simultaneous localization and map building. In: Proceedings 2001 IEEE International Conference on Robotics and Automation (2001)

  12. Meyer, Y.: Wavelets and operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Mallat, S.: A wavelet tour of signal processing. Academic Press, New York (1999)

    MATH  Google Scholar 

  14. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  15. DeVore, R., Lorentz, G.: Constructive approximation (1993)

  16. Opfer, R.: Tight frame expansions of multiscale reproducing kernels in Sobolev spaces. Applied Computational Harmonic Analysis (2006)

  17. Opfer, R.: Multiscale kernels. Advances in Computational Mathematics (2006)

  18. DeVore, R., Kerkyacharian, G., Picard, D., Temlyakov, V.: Approximation methods for supervised learning. Foundations of Computational Mathematics (2006)

  19. Konyagin, S.V., Temlyakov, V.N.: The entropy in learning theory. Error estimates. Constr. Approx. 25(1), 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cohen, A., DeVore, R., Kerkyacharian, G., Picard, D.: Maximal spaces with given rate of convergence for thresholding algorithms. Applied and Computational Harmonic Analysis (2001)

  21. Temlyakov, V.N.: Approximation in learning theory. Constructive Approximation (2008)

  22. Sastry, S., Bodson, M.: Adaptive control: stability, convergence and robustness. Dover, New York (2011)

    MATH  Google Scholar 

  23. Ioannou, P.A., Sun, J.: Robust adaptive control. Dover, New York (2012)

    MATH  Google Scholar 

  24. Farrell, J.A., Polycarpou, M.M.: Adaptive approximation based control: unifying neural, fuzzy and traditional adaptive approximation approaches. Wiley, New York (2006)

    Book  Google Scholar 

  25. Duncan, T.E., Maslowski, B., Pasik-Duncan, B.: Adaptive boundary and point control of linear stochastic distributed parameter systems. SIAM J Control Optim. (1997)

  26. Duncan, T.E., Pasik-Duncan, B.: Adaptive control of linear delay time systems. Stochastics (1988)

  27. Duncan, T.E., Pasik-Duncan, B., Goldys, B.: Adaptive control of linear stochastic evolution systems. Stochastics Rep. (1991)

  28. Pasik-Duncan, B.: On the consistency of a least squares identification procedure in linear evolution systems. Stochastics Report. (1992)

  29. Hovakimyan, N., Cao, C.: \(\mathcal {L}^{1}\) Adaptive control theory. SIAM (2010)

  30. Narendra, K., Annaswamy, A.M.: Stable adaptive systems. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  31. Narendra, K., Parthasarthy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks (1990)

  32. Narendra, K.S., Kudva, P.: Stable adaptive schemes for system identification and control - part II. IEEE Trans. Syst. Man Cybern., SMC- 4(6), 552–560 (1974)

    Article  MATH  Google Scholar 

  33. Morgan, A.P., Narendra, K.S.: On stability of nonautonomous differential equations \(\dot {x}=[a+b(t)]x\), with skew symmetric b(t). SIAM Journal of Control and Optimisation (1977)

  34. Banks, H.T., Kunisch, K.: Estimation techniques for distributed parameter systems. Birkhauser, Cambridge (1989)

    Book  MATH  Google Scholar 

  35. Smale, S., Zhou, X.: Learning theory estimates via integral operators and their approximations. Constructive Approximation (2007)

  36. DeVore, R.: Adapting to unknown smoothness via wavelet shrinkage. Acta Numerica (1998)

  37. Adams, R.A., Fournier, John: Sobolev spaces. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  38. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer, New York (2011)

    MATH  Google Scholar 

  39. Farkas, B., Wegner, S.-A.: Variations on Barbalat’s lemma. arXiv:1411.1611v3 (2016)

  40. Demetriou, M.A., Rosen, I.G.: On the persistence of excitation in the adaptive identification of distributed parameter systems. IEEE Transactions of Automatic Control (1994)

  41. Narendra, K.S., Annaswamy, A.M.: Persistent excitation in adaptive systems. International Journal of Control (1987)

  42. Demetriou, M.A.: Adaptive parameter estimation of abstract parabolic and hyperbolic distributed parameter systems. Phd thesis, University of Southern California, Los Angeles (1993)

    Google Scholar 

  43. Demetriou, M.A., Rosen, I.G.: Adaptive identification of second order distributed parameter systems. Inverse Problems (1994)

  44. Kazimir, Joseph, Rosen, I.G.: Adaptive estimation of nonlinear distributed parameter systems. International Series of Numerical Mathematics. Birkhauser Verlag, Basel (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Bobade.

Additional information

Communicated by: Youssef Marzouk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobade, P., Majumdar, S., Pereira, S. et al. Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces. Adv Comput Math 45, 869–896 (2019). https://doi.org/10.1007/s10444-018-9639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9639-z

Keywords

Navigation