Skip to main content
Log in

Nonlinear approximation with nonstationary Gabor frames

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider sparseness properties of adaptive time-frequency representations obtained using nonstationary Gabor frames (NSGFs). NSGFs generalize classical Gabor frames by allowing for adaptivity in either time or frequency. It is known that the concept of painless nonorthogonal expansions generalizes to the nonstationary case, providing perfect reconstruction and an FFT based implementation for compactly supported window functions sampled at a certain density. It is also known that for some signal classes, NSGFs with flexible time resolution tend to provide sparser expansions than can be obtained with classical Gabor frames. In this article we show, for the continuous case, that sparseness of a nonstationary Gabor expansion is equivalent to smoothness in an associated decomposition space. In this way we characterize signals with sparse expansions relative to NSGFs with flexible time resolution. Based on this characterization we prove an upper bound on the approximation error occurring when thresholding the coefficients of the corresponding frame expansions. We complement the theoretical results with numerical experiments, estimating the rate of approximation obtained from thresholding the coefficients of both stationary and nonstationary Gabor expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G.: Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. 236(6), 1481–1496 (2011). https://doi.org/10.1016/j.cam.2011.09.011

    Article  MathSciNet  MATH  Google Scholar 

  2. Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007). https://doi.org/10.1007/s00041-006-6024-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Borup, L., Nielsen, M.: On anisotropic Triebel-Lizorkin type spaces, with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl. 6 (2), 107–154 (2008). https://doi.org/10.1155/2008/510584

    Article  MathSciNet  MATH  Google Scholar 

  4. Butzer, P.L., Scherer, K.: Jackson and Bernstein-type inequalities for families of commutative operators in Banach spaces. J. Approximation Theory 5, 308–342 (1972). Collection of articles dedicated to J. L. Walsh on his 75th birthday, III

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25613-9

    Google Scholar 

  6. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986). https://doi.org/10.1063/1.527388

    Article  MathSciNet  MATH  Google Scholar 

  7. DeVore, R.A.: Nonlinear Approximation. In: Acta Numerica, 1998, Acta Numer, vol. 7, pp 51–150. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/S0962492900002816

  8. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer, Berlin (1993). https://doi.org/10.1007/978-3-662-02888-9

    Google Scholar 

  9. Dixon, S.: Onset detection revisited. In: Proceedings of the International Conference on Digital Audio Effects (DAFx-06), pp 133–137, Montreal, Quebec, Canada (2006)

  10. Dörfler, M.: Time-frequency analysis for music signals: a mathematical approach. Journal of New Music Research 30(1), 3–12 (2001)

    Article  Google Scholar 

  11. Dörfler, M.: Quilted Gabor frames—a new concept for adaptive time-frequency representation. Adv. Appl. Math. 47(4), 668–687 (2011). https://doi.org/10.1016/j.aam.2011.02.007

    Article  MathSciNet  MATH  Google Scholar 

  12. Dörfler, M., Godsill, S., Wolfe, P.: Multi-Gabor dictionaries for audio time-frequency analysis. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 43–46. Mohonk, NY, NuHAG-coop (2001)

  13. Dörfler, M., Matusiak, E.: Nonstationary Gabor frames—existence and construction. Int. J. Wavelets Multiresolut. Inf. Process. 12(3), 1450,032, 18 (2014). https://doi.org/10.1142/S0219691314500325

    Article  MathSciNet  MATH  Google Scholar 

  14. Feichtinger, H. G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980), Colloq. Math. Soc. János Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)

  15. Feichtinger, H. G.: Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 132, 207–237 (1987). https://doi.org/10.1002/mana.19871320116

    Article  MathSciNet  MATH  Google Scholar 

  16. Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: Radha, R., Krishna, M., Thangavelu, S. (eds.) Proceedings of the International Conference on Wavelets and Applications, pp 1–56. NuHAG, New Delhi Allied Publishers (2003)

  17. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985). https://doi.org/10.1002/mana.19851230110

    Article  MathSciNet  MATH  Google Scholar 

  19. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2013). https://doi.org/10.1007/978-0-8176-4948-7

    MATH  Google Scholar 

  20. Gabor, D.: Theory of communication. J. IEE 93(26), 429–457 (1946)

    Google Scholar 

  21. Gribonval, R., Nielsen, M.: Nonlinear approximation with dictionaries. I. Direct estimates. J. Fourier Anal. Appl. 10(1), 51–71 (2004). https://doi.org/10.1007/s00041-004-8003-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Gribonval, R., Nielsen, M.: Nonlinear approximation with dictionaries. II. Inverse estimates. Constr. Approx. 24(2), 157–173 (2006). https://doi.org/10.1007/s00365-005-0621-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA (2001). https://doi.org/10.1007/978-1-4612-0003-1

    MATH  Google Scholar 

  24. Gröchenig, K., Samarah, S.: Nonlinear approximation with local Fourier bases. Constr. Approx. 16(3), 317–331 (2000). https://doi.org/10.1007/s003659910014

    Article  MathSciNet  MATH  Google Scholar 

  25. Heil, C.: An introduction to weighted Wiener amalgams. Wavelets and their Applications (Chennai, January 2002), pp. 183–216 (2003)

  26. Hernández, E., Labate, D., Weiss, G.: A unified characterization of reproducing systems generated by a finite family. II. J. Geom. Anal. 12(4), 615–662 (2002). https://doi.org/10.1007/BF02930656

    Article  MathSciNet  MATH  Google Scholar 

  27. Holighaus, N.: Structure of nonstationary Gabor frames and their dual systems. Appl. Comput. Harmon. Anal. 37(3), 442–463 (2014). https://doi.org/10.1016/j.acha.2014.01.004

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaillet, F., Torrésani, B.: Time-frequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions. Int. J. Wavelets Multiresolut. Inf. Process. 5(2), 293–315 (2007). https://doi.org/10.1142/S0219691307001768

    Article  MathSciNet  MATH  Google Scholar 

  29. Katznelson, Y.: An Introduction to Harmonic Analysis, Corrected Edn. Dover Publications Inc., New York (1976)

    Google Scholar 

  30. Lieb, E.H., Loss, M.: Analysis Graduate Studies in Mathematics, 2nd edn., vol. 14. American Mathematical Society, Providence (2001). https://doi.org/10.1090/gsm/014

    Google Scholar 

  31. Liuni, M., Roebel, A., Matusiak, E., Romito, M., Rodet, X.: Automatic adaptation of the time-frequency resolution for sound analysis and re-synthesis. IEEE Trans. Audio Speech Lang. Process. 21-5, 959–970 (2013)

    Article  Google Scholar 

  32. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Elsevier/Academic Press, Amsterdam (2009). The sparse way, With contributions from Gabriel Peyré

    MATH  Google Scholar 

  33. Ottosen, E.S., Nielsen, M.: A characterization of sparse nonstationary Gabor expansions. J. Fourier Anal. Appl. (2017). https://doi.org/10.1007/s00041-017-9546-6

  34. Pfander, G. E., Rauhut, H., Tropp, J. A.: The restricted isometry property for time-frequency structured random matrices. Probab. Theory Related Fields 156 (3-4), 707–737 (2013). https://doi.org/10.1007/s00440-012-0441-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Průša, Z., Søndergaard, P.L., Holighaus, N., Wiesmeyr, C., Balazs, P.: The large time-frequency analysis toolbox 2.0. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds.) Sound, Music, and Motion, Lecture Notes in Computer Science, pp 419–442. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-12976-1_25

  36. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in L 2(R d). Duke Math. J. 89 (2), 237–282 (1997). https://doi.org/10.1215/S0012-7094-97-08913-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Ron, A., Shen, Z.: Generalized shift-invariant systems. Constr. Approx. 22 (1), 1–45 (2005). https://doi.org/10.1007/s00365-004-0563-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Basel, Birkhäuser Verlag (1983). https://doi.org/10.1007/978-3-0346-0416-1

    Book  Google Scholar 

  39. Union, E.B.: Sound Quality Assessment Material: Recordings for Subjective Tests; User’s Handbook for the EBU - SQAM Compact Disc (2008). https://tech.ebu.ch/docs/tech/tech3253.pdf

  40. Voigtlaender, F.: Structured, compactly supported Banach frame decompositions of decomposition spaces. arXiv:1612.08772 (2016)

  41. Young, R.M.: An Introduction to Nonharmonic Fourier Series Pure and Applied Mathematics, vol. 93. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1980)

    Google Scholar 

  42. Zibulski, M., Zeevi, Y.Y.: Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal. 4(2), 188–221 (1997). https://doi.org/10.1006/acha.1997.0209

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Solsbæk Ottosen.

Additional information

Communicated by: Yang Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottosen, E.S., Nielsen, M. Nonlinear approximation with nonstationary Gabor frames. Adv Comput Math 44, 1183–1203 (2018). https://doi.org/10.1007/s10444-017-9577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9577-1

Keywords

Mathematics Subject Classification (2010)

Navigation