Skip to main content
Log in

Design and modeling of a combined embedded enhanced honeycomb with tunable mechanical properties

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Honeycomb structures are increasingly being used in many important fields. A novel combined embedded enhanced honeycomb (CEEH) in developed in this paper based on the two existing embedded enhanced honeycombs, the single rib embedded enhanced honeycomb (SREEH) and the rhombic grid embedded enhanced honeycomb (RGEEH). Analytical model related to the in-plane Young’s modulus and Poisson’s ratio is built and validated by using two different finite element (FE) models (3D beam model and 3D solid model). The in-plane elastic behavior of the honeycomb is also investigated against the geometrical parameters by using the numerically validated analytical solutions. The results show that the new CEEH can achieve a wide range value of Poisson’s ratio and Young’s modulus by tailoring geometric parameters. The results also show that the new CEEH exhibits higher x- directional specific stiffness than SREEH while higher y- directional specific stiffness than RGEEH. Moreover, the new CEEH can weaken even eliminate the difference between the two principal directions which can be hardly achieved by the SREEH and RGEEH. Given these advantages, this new design may be promising in some applications. This work provides a new insight into the designs of embedded enhanced honeycombs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., Han, B., Zhang, X., Jin, F., Xu, F., Lu, T.J.: Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015)

    Article  Google Scholar 

  3. Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017)

    Article  Google Scholar 

  4. Carneiro, V.H., Meireles, J., Puga, H.: Auxetic materials — A review. Mater. Sci. Pol. 31(4), 561–571 (2013)

    Article  Google Scholar 

  5. Grima, J.N., Attard, D., Gatt, R., Cassar, R.N.: A novel process for the manufacture of auxetic foams and for their re-convention to conventional form. Adv. Eng. Mater. 11(7), 533–535 (2010)

    Article  Google Scholar 

  6. Lakes, R.: Foam Structures with a Negative Poisson's Ratio. Sci. 235(4792), 1038–1040 (1987)

    Article  CAS  Google Scholar 

  7. Evans, K.E., Nkansah, M.A., Hutchinson, I.J., ROGERS, S.C.: Molecular network design. Nat. 353(6340), 124–124 (1991)

    Article  CAS  Google Scholar 

  8. Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017)

    Article  CAS  Google Scholar 

  9. Mousanezhad, D., Babaee, S., Ebrahimi, H., Ghosh, R., Hamouda, A.S., Bertoldi, K., Vaziri, A.: Hierarchical honeycomb auxetic metamaterials. Sci Rep. 5, 18306 (2015)

    Article  CAS  Google Scholar 

  10. Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson's ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)

    Article  CAS  Google Scholar 

  11. Ghaedizadeh, A., Shen, J., Ren, X., Xie, Y.: Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Mater. 9(1), 1–27 (2016)

    Article  Google Scholar 

  12. Argatov, I.I., Guinovart-Díaz, R., Sabina, F.J.: On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint. Int. J. Eng. Sci. 54(5), 42–57 (2012)

    Article  Google Scholar 

  13. Coenen, V.L., Alderson, K.L.: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Phys. Status Solidi B. 248(1), 66–72 (2011)

    Article  CAS  Google Scholar 

  14. Evans, K.E., Alderson, A.: Auextic materials: functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000)

    Article  CAS  Google Scholar 

  15. Mohsenizadeh, S., Alipour, R., Rad, M.S., Nejad, A.F., Ahmad, Z.: Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater. Des. 88, 258–268 (2015)

    Article  Google Scholar 

  16. Hou, S., Liu, T., Zhang, Z., Han, X., Li, Q.: How does negative Poisson’s ratio of foam filler affect crashworthiness? Mater. Des. 82, 247–259 (2015)

    Article  Google Scholar 

  17. Choi, J.B., Lakes, R.S.: Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis. Int. J. Fract. 80(1), 73–83 (1996)

    Article  Google Scholar 

  18. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)

    Article  CAS  Google Scholar 

  19. Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Compos. Struct. 35(4), 403–422 (1996)

    Article  Google Scholar 

  20. Grima, J.N., Attard, D., Ellul, B., Gatt, R.: An improved analytical model for the elastic constants of auxetic and conventional hexagonal honeycombs. Cell. Polym. 30(6), 287–310 (2011)

    Article  CAS  Google Scholar 

  21. Scarpa, F., Panayiotou, P., Tomlinson, G.: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J. Strain Anal. Eng. Des. 35(35), 383–388 (2000)

    Article  Google Scholar 

  22. Hu, L.L., Deng, H.: Indentation resistance of the re-entrant hexagonal honeycombs with negative poisson’s ratio. Mater. Res. Innov. 19(S1), S1-442–S1-445 (2015)

    Article  Google Scholar 

  23. Wan, H., Ohtaki, H., Kotosaka, S., Hu, G.M.: A study of negative Poisson's ratios in auxetic honeycombs based on a large deflection model. Eur. J. Mech. A. Solids. 23(1), 95–106 (2004)

    Article  Google Scholar 

  24. Fu, M.H., Xu, O.T., Hu, L.L., Yu, T.X.: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation. Int. J. Solids Struct. 80, 284–296 (2015)

    Article  Google Scholar 

  25. Liu, W., Wang, N., Luo, T., Lin, Z.: In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater. Des. 100, 84–91 (2016)

    Article  Google Scholar 

  26. Boldrin, L., Hummel, S., Scarpa, F., Di Maio, D., Lira, C., Ruzzene, M., Remillat, C.D.L., Lim, T.C., Rajasekaran, R., Patsias, S.: Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Compos. Struct. 149, 114–124 (2016)

    Article  Google Scholar 

  27. Zied, K., Osman, M., Elmahdy, T.: Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores. Phys. Status Solidi B. 252(12), 2685–2692 (2015)

    Article  CAS  Google Scholar 

  28. Li, D., Ma, J., Dong, L., Lakes, R.S.: Stiff square structure with a negative Poisson’s ratio. Mater. Lett. 188, 149–151 (2017)

    Article  CAS  Google Scholar 

  29. Lu, Z.X., Li, X., Yang, Z.Y., Xie, F.: Novel structure with negative Poisson’s ratio and enhanced Young’s modulus. Compos. Struct. 138, 243–252 (2016)

    Article  Google Scholar 

  30. Fu, M.H., Chen, Y., Hu, L.L.: Bilinear elastic characteristic of enhanced auxetic honeycombs. Compos. Struct. 175, 101–110 (2017)

    Article  Google Scholar 

  31. Grima, J.N., Oliveri, L., Attard, D., Ellul, B., Gatt, R., Cicala, G., Recca, G.: Hexagonal Honeycombs with Zero Poisson's Ratios and Enhanced Stiffness. Adv. Eng. Mater. 12(9), 855–862 (2010)

    Article  Google Scholar 

  32. Lira, C., Scarpa, F.: Transverse shear stiffness of thickness gradient honeycombs. Compos. Sci. Technol. 70(6), 930–936 (2010)

    Article  Google Scholar 

  33. Assidi, M., Ganghoffer, J.F.: Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos. Struct. 94(8), 2373–2382 (2012)

    Article  Google Scholar 

  34. Poźniak, A.A., Wojciechowski, K.W., Grima, J.N., Mizzi, L.: Planar auxeticity from elliptic inclusions. Compos. Part B. 94, 379–388 (2016)

    Article  Google Scholar 

  35. Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2012)

    Article  Google Scholar 

  36. Yang, L., Harrysson, O., West, H., Cormier, D.: Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J. Mater. Sci. 48(4), 1413–1422 (2013)

    Article  CAS  Google Scholar 

  37. Yang, L., Harrysson, O., West, H., Cormier, D.: Mechanical properties of 3D reentrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69–70, 475–490 (2015)

    Article  Google Scholar 

  38. Wang, K., Chang, Y.H., Chen, Y.W., Zhang, C., Wang, B.: Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Des. 67, 159–164 (2015)

    Article  Google Scholar 

  39. Wang, X.T., Li, X.W., Ma, L.: Interlocking assembled 3D auxetic cellular structures. Mater. Des. 99, 467–476 (2016)

    Article  Google Scholar 

  40. Wang, X.T., Wang, B., Li, X.W., Ma, L.: Mechanical properties of 3D re-entrant auxetic cellular structures. Int. J. Mech. Sci. 131–132, 396–407 (2017)

    Article  Google Scholar 

  41. Fu, M.H., Chen, Y., Hu, L.L.: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. 160, 574–585 (2016)

    Article  Google Scholar 

  42. Ştefan, S., Sandu, M., Sandu, A., Dan, M.C.: Finite Element Models Used to Determine the Equivalent In-plane Properties of Honeycombs. Mater. Today Proc. 3(4), 1161–1166 (2016)

    Article  Google Scholar 

  43. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)

    Article  CAS  Google Scholar 

  44. Grenestedt, J.L.: Effective elastic behavior of some models for perfect cellular solids. Int. J. Solids Struct. 36(10), 1471–1501 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number 11672338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, MH. Design and modeling of a combined embedded enhanced honeycomb with tunable mechanical properties. Appl Compos Mater 25, 1041–1055 (2018). https://doi.org/10.1007/s10443-017-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9650-4

Keywords

Navigation