Skip to main content
Log in

Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. von Kármàn, T.: The impact of seaplane floats during landing. NACA TN, Washington, DC (1929)

    Google Scholar 

  2. Wagner, H.: Uber stoss und gleitvorgange an der oberflach von flussigkeiten. Zeitschrift fuer Angewandte Mathematik und Mechanik. 12, 193–215 (1932)

    Article  Google Scholar 

  3. Zhao, R., Faltinsen, O.: Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593–612 (1993)

    Article  Google Scholar 

  4. Faltinsen, M.: Hydroelastic salmming. J. Mar. Sci. Technol. 5, 49–65 (2000)

    Article  Google Scholar 

  5. Stenius, I.: Finite element modelling of hydroelasticity. (2006)

  6. Peseux, B., Gornet, L., Donguy, B.: Hydrodynamic impact: numerical and experiment investigations. J. Fluids Struct. 21, 277–303 (2005)

    Article  Google Scholar 

  7. Huera-Huarte, F.J., Jeon, D., Gharib, M.: Experimental investigation of water slamming loads on panels. Ocean Eng. 38, 1347–1355 (2011)

    Article  Google Scholar 

  8. Mahfuz, H., Ma, S.: Finite element simulation of composite ship structures with fluid structure interaction. Ocean Eng. 52, 52–59 (2012)

    Article  Google Scholar 

  9. Panciroli, R., Abrate, A., Minak, G.: Dynamic Responce of flexible wedges entering the water. Compos. Struct. 99, 163–171 (2013)

    Article  Google Scholar 

  10. Panciroli, R.: Hydrodynamic impact of deformable wedges. In: Dynamic Failure of Composite and Sandwich Structrure, pp. 1–45. Springger Science, Business Media Dordrecht, New York (2013)

  11. Maki, K.J., Lee, D., Troesch, A.W., Vlahopoulos, N.: Hydroelastic impact of a wedge-shaped body. Ocean Eng. 38, 621–629 (2011)

    Article  Google Scholar 

  12. Das, K., Batra, R.C.: Local water slamming impact on sandwich composite hulls. J. Fluids Struct. 27, 523–551 (2011)

    Article  Google Scholar 

  13. Stenius, I., Rose, A., Kuttenkeuler, J.: Hydroelastic interaction in panel-water impacts of high-speed craft. Ocean Eng. 38, 371–381 (2011)

    Article  Google Scholar 

  14. De Rosis, A., Falcucci, G., Porfiri, M., Ubertini, F., Ubertini, S.: Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput. Struct. 138, 24–35 (2014)

    Article  Google Scholar 

  15. Stenius, I., Rsén, A., Battley, M., Allen, T.: Experimantal Hydroelastic characterization of slamming loaded marine panels. Ocean Eng. 74, 1–15 (2013)

    Article  Google Scholar 

  16. Hassoon, O.H., Tarfaoui, M., El Moumen, A.: Progressive damage modeling in laminate composites under slamming impact water for naval applications. Compos. Struct. 167, 178–190 (2017)

    Article  Google Scholar 

  17. Hassoon, O.H., Tarfaoui, M., Alaoui, A.E., El Moumen, A.: Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads. Compos. Struct. 178, 297–307 (2017)

    Article  Google Scholar 

  18. Aquelet, A., Souli, M.: A new ALE formulation for sloshing analysis. Struct. Eng. Mech. 16, 423–440 (2003)

    Article  Google Scholar 

  19. Smojver, I., Ivancevic, D.: Bird strike damage analysis in aircraft structures using Abaqus/explicit and coupled Eulerian Lagrangian approach. Compos. Sci. Technol. 71, 489–498 (2011)

    Article  Google Scholar 

  20. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Article  Google Scholar 

  21. Benson, D.J.: Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 193, 4277–4298 (2004)

    Article  Google Scholar 

  22. Aboshio, A., Ye, J.: Numerical study of the dynamic response of inflatable offshore fender barrier structures using the coupled Eulerian–Lagrangian discretization technique. Ocean Eng. 112, 265–276 (2016)

    Article  Google Scholar 

  23. Shah, O.R., Tarfaoui, M.: Effect of adhesive thickness on the mode I and II strain energy release rates. Comparative study between different approaches for the calculation of Mode I & II SERR's. Compos. Part B Eng. 96, 354–363 (2016)

    Article  Google Scholar 

  24. Battley, M., Allen, T.: Servo-hydraulic system for controlled velocity water impact of marine sandwich panels. Exp. Mech. 52, 95–106 (2012)

    Article  Google Scholar 

  25. Bozhevolnaya, E., Thomsen, O.T.: Structurally graded core junctions in sandwich beams: fatigue loading conditions. Compos. Struct. 70, 12–23 (2005)

    Article  Google Scholar 

  26. Tarfaoui, M., Gning, P.B., Hamitouche, L.: Dynamic response and damage modeling of glass/epoxy tubular structures: numerical investigation. Compos. Part A. 39, 1–12 (2008)

    Article  Google Scholar 

  27. Tarfaoui, M., Choukri, S., Neme, A.: Damage kinetics of glass/epoxy composite materials under dynamic compression. J. Compos. Mater. 43, 1137–1154 (2009)

    Article  Google Scholar 

  28. Faltinsen, OM.: Slamming, whipping, and springing. In: Hydrodynamics of High-Speed Marine Vechicles pp. 302–311. New York, Cambrige University Press (2005)

  29. Charca, S., Shafiq, B.: Repeating slamming of sandwich composite panels on water. J. Sandw. Struct. Mater. 11, 409–424 (2009)

    Article  Google Scholar 

  30. Allen, T., Battley, M.A.: Quantification of hydroelasticity in water impacts of flexible composite hull panels. Ocean Eng. 100, 117–125 (2015)

    Article  Google Scholar 

  31. DVN.: Hull structure design, fiber composite and sandwich constructions. In: Rule for Classification of High Speed, Light Craft and Naval Surface Craft, Part 3, Chapter 4 (2011)

  32. Kwon, Y.W.: Dynamic responses of composite structures in contact with water while subjected to harmonic loads. Appl. Compos. Mater. 21, 227–245 (2014)

    Article  Google Scholar 

  33. Baley, C., Davies, P., Grohens, Y., Dolto, G.: Application of Interlaminar tests to marine composites. A literature review. Appl. Compos. Mater. 11, 99–126 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Moumen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassoon, O.H., Tarfaoui, M., El Moumen, A. et al. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications. Appl Compos Mater 25, 689–706 (2018). https://doi.org/10.1007/s10443-017-9646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9646-0

Keywords

Navigation