Skip to main content

Advertisement

Log in

Computational and Theoretical Analysis of the Association Between Gender and HSV-2 Treatment Adherence

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 2 (HSV-2) is the most prevalent sexually transmitted infection in the world, despite the availability of effective anti-viral treatments. A mathematical model to explore the association between gender and HSV-2 treatment adherence is developed. Threshold parameters are determined and stabilities analyzed. Sensitivity analysis of the reproduction number and the numerical simulations suggest that treatment adherence for both females and males are equally important in keeping the reproduction as low as possible. The basic model is then extended to incorporate time-dependent intervention strategies. The Pontryagin’s Maximum Principle is used to characterize the optimal level of the controls, and the resulting optimality system is solved numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are included within the article and cited accordingly.

References

  • Abu-Raddad LJ, Magaret AS, Celum C, Wald A, Longini IM Jr, Self SG, Corey L (2008) Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PLoS ONE 3:e2230

    Google Scholar 

  • Alsallaq RM, Schiffer JT, Longini IM, Wald A, Corey L, Abu-Raddad LJ (2010) Population level impact of an imperfect prophylactic vaccine. Sex Transm Dis 37(5):290–297

    Google Scholar 

  • Alvey C, Feng Z, Glasser J (2015) A model for the coupled disease dynamics of HIV and HSV-2 with mixing among and between genders. Math Biosc 265:82–100

    Google Scholar 

  • Bangsberg DR, Perry S, Charlebois ED, Clark RA, Roberston M, Zolopa AR, Moss A (2001) Non-adherence to highly active anti-retroviral therapy predicts progression to AIDS. AIDS 15(9):1181–1183

    Google Scholar 

  • Blower S, Porco T, Darby G (1998) Predicting and preventing the emergence of anti-viral drug resistance in HSV-2. Nat Med 4:673–678

    Google Scholar 

  • Bonolo P, Ceccato M, Rocha G, Acú rcio F, Campos L, Guimaráes BMC (2013) Gender differences in non-adherence among Brazilian patients initiating antiretroviral therapy. Clinic (Sao Paulo) 68(5):612–620

    Google Scholar 

  • Bosworth H ed. (2010) Improving patient treatment adherence: a clinician’s guide: introduction, ISBN 978-1-4419-5865-57, New York

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosc Eng 1:361–404

    Google Scholar 

  • Chilcot J, Wellsted D, Farrington K (2010) Illness representations are associated with fluid non adherence among hemodialysis patients. J Psychosom Res 68:203–212

    Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases, vol 171. Wiley, Chichester

    Google Scholar 

  • Feng Z, Qiu Z, Sang Z, Lorenzo C, Glasser J (2013b) Modelling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy. Math Biosc 245(2):171–178

    Google Scholar 

  • Fisher M (2013) Washington Post, A map of countries where homosexuality is criminalized, (online)

  • Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New York

    Google Scholar 

  • Foss AM, Vickerman PT, Chalabi Z, Mayaud P, Alary M, Watts CH (2009) Dynamics modelling of herpes simplex virus type-2 (HSV-2) transmission: issue in structure uncertainty. Bull Math Biol 71:720

    Google Scholar 

  • Garnett GP, Dublin G, Slaoui M, Darcis T (2004) The potential epidemiological impact of a genital herpes vaccine for women. Sex Transm Infect 80(1):24–29

    Google Scholar 

  • Geretti A (2006) Genital herpes. Sex Transm Inf 82:iv31–iviv34

    Google Scholar 

  • Golin CE, Liu H, Hays RD, Miller LG, Beck CK, Ickovics J, Kaplan AH, Wenger NS (2002) A prospective study of predictors of adherence to combination anti-retroviral medication. J Gen Intern Med 17(10):756–765

    Google Scholar 

  • Gopal R, Gibbs T, Slomka MJ, Whitworth J, Carpenter LM, Vyse A, Brown DW (2000) A Monoclonal blocking EIA for herpes simplex virus type 2 (HSV-2) antibody: validation for seroepidemiological studies in Africa. J Virol Methods 87(1–2):71–80

    Google Scholar 

  • Gronwall TH (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math 20:292–296

    Google Scholar 

  • Hagopian A, Rao D, Katz A, Sanford S, Barnhart S (2017) Anti-homosexual legislation and HIV-related stigma in African nations: what has been the role of PEPFAR? Glob Health Action 10:1306391. https://doi.org/10.1080/16549716.2017.1306391

    Article  Google Scholar 

  • Henshaw AL (2014) Geographies of tolerance: human development, heteronormativity, and religion. Sex Cult 18(4):959–976

    Google Scholar 

  • Hill YL, Biro FM (2009) Adolescents and sexually transmitted infections. CME Feature

  • Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnston C, Koelle DM, Wald A (2013) Current status and prospects for development of an HSV vaccine. Vaccine. https://doi.org/10.1016/j.vaccine.2013.08.066

    Article  Google Scholar 

  • Katharine JL, Geoffery PG, George PS (2001) An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ 86(10):805–812

    Google Scholar 

  • Klonoff EA, Landrine H (1994) Culture and gender diversity in common sense beliefs about the causes of six illnesses. J Behav Med 17:407–418

    Google Scholar 

  • Kyngas H, Lahdenpera T (1999) Compliance of patients with hypertension and associated factors. J Adv Nurs 29:832–839

    Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems, in: CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia 12

  • Looker KJ, Garnett GP, Schmid GP (2008) An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ 86(10):805A–812A

    Google Scholar 

  • Lou Y, Qesmi R, Wang Q, Steben M, Wu J (2012) Epidemiological impact of a genital herpes type 2 vaccine for young females. PLoS ONE 7(10):e46027

    Google Scholar 

  • Luseno WK, Hallfors DD, Cho H, Iritani BJ, Adze J, Rusakaniko S, Mbai I, Milimo B, Hobbs M (2014) Use of HIV and HSV-2 biomarkers in sub-Saharan adolescent prevention research: a comparison of two approaches. J Prim Prev 35(3):181–191

    Google Scholar 

  • Magombedze G, Garira W, Mwenje E, Bhunu CP (2011) Optimal control for HIV-1 triple 41 therapy. Int J Comput Math 88:314–340

    Google Scholar 

  • Mhlanga A, Bhunu CP, Mushayabasa S (2014) HSV-2 and substance abuse amongst adolescents: insights through mathematical modelling. J Appl Math. https://doi.org/10.1155/2014/104819

    Article  Google Scholar 

  • Mhlanga A, Bhunu CP, Mushayabasa S (2015) A computational study of HSV-2 with poor treatment adherence.t. Abstr Appl Anal. https://doi.org/10.1155/2015/850670

    Article  Google Scholar 

  • Munjoma MW, Kurewa EN, Mapingure MPP, Mashavave GV, Chirenje MZ, Rusakaniko S, Hussain A, Stray-Pedersen B (2010) The prevalence, incidence and risk factors of herpes simplex virus type 2 infection among pregnant Zimbabwean women followed up nine months after childbirth. BMC Women’s Health. https://doi.org/10.1186/1472-6874-10-2

    Article  Google Scholar 

  • Omori R, Nagelkerke N, Abu-Raddad LJ (2017) HIV and herpes simplex virus type 2 epidemiological synergy: misguided observational evidence? A modelling study. Sex Transm Infect 94(5):372–376

    Google Scholar 

  • Plummer ML, Watson-Jones D, Lees S, Baisley K, Matari S, Changalucha J, Clayton T, Mugeye K, Tanton C, Weiss WA, Ross DA, Hayes RJ (2010) A qualitative study of participant adherence in a randomized controlled trial of herpes suppressive therapy for HIV prevention in Tanzania. AIDS Care 22(4):499–508

    Google Scholar 

  • Podder CN, Gumel AB (2010) Qualitative dynamics of a vaccination model for HSV-2. IMA J Appl Math 75(1):75–107

    Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko FF (1962) The mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  • Pontryagin LS, Boltyanskii VT, Gamkrelidze RV, Mishchevko EF (1985) The mathematical theory of optimal processes. Gordon and Breach Science Publishers, London

    Google Scholar 

  • Ross S, Walker A, MacLeod MJ (2004) Patient compliance in hypertension: role of illness perceptions and treatment beliefs. J Hum Hypertens 18:607–613

    Google Scholar 

  • Schwartz EJ, Blower S (2005) Predicting the potential individual and population-level effects of imperfect herpes simplex virus type 2 vaccines. J Infect Dis 191(10):1734–1746

    Google Scholar 

  • Shuai Z, Heesterbeek JAP, Van den Driessche P (2013) Extending the type reproduction number to infectious disease control targeting contact between types. J Math Biol 67(5):1067–1082

    Google Scholar 

  • Smith HL, Waltman P (1995) The theory of a chemostat. Cambridge University Press, Cambridge

    Google Scholar 

  • Tapp C, Milloy MJ, Kerr T, Zhang R, Guillemi S, Hogg RS, Montaner J, Wood E (2011) Female gender predicts lower access and adherence to anti retroviral therapy in a setting of free healthcare. BMC Infect Dis. https://doi.org/10.1186/1471-2334-11-86

    Article  Google Scholar 

  • Thieme HR (1992) Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations. J Math Biol 30:755–763

    Google Scholar 

  • Thieme HR (1993) Persistence under relaxed point-dissipativity with an application to en epidemic model. SIAM J Math Anal 24:407–435

    Google Scholar 

  • Tobian AA, Charvat B, Ssempijja V, Kigozi G, Serwadda D, Makumbi F, Iga B, Laeyendecker O, Riedesel M, Oliver A, Chen MZ, Reynolds SJ, Wawer MJ, Gray RH, Quinn TC (2009) Factors associated with the prevalence and incidence of herpes simplex virus type 2 infection among men in Rakai, Uganda. J Infect Dis 199:945–949

    Google Scholar 

  • U.S. Department of States Office of the U.S. Global AIDS Coordinator (2014) PEPFAR 3.0: controlling the epidemic: delivering on the promise of an AIDS-free generation. Available from: http://www.pepfar.gov/documents/organization/234744.pdf

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Google Scholar 

  • Victor RG, Leonard D, Hess P, Bhat DG, Jones J, Vaeth PAC, Ravenell J, Freeman A, Wilson RP, Haley RW (2008) Factors associated with hypertension awareness, treatment and control in Dallas County, Texas. Arch Intern Med 168:1285–1293

    Google Scholar 

  • Wang W, Zhao X (2004) An epidemic model in a patchy environment. Math Biosci 190:97–112

    Google Scholar 

  • Wang J, Yu X, Tessmer HL, Kuniya T, Omori R (2017) Modelling infectious diseases with relapse: a case study of HSV-2. Theor Biol Med Model. https://doi.org/10.1186/s12976-017-0059-4

    Article  Google Scholar 

  • Watson-Jones D, Weiss H, Rusizoka M, Baisley K, Mugeye K, Changalucha J, Everett D, Balira R, Knight L, Ross D, Hayes RJ (2007) Risk factors for herpes simplex virus type 2 and HIV among women at high risk in north western Tanzania: preparing for an HSV-2 intervention trial. J Acquir Immune Defic Syndr 46(5):631–642

    Google Scholar 

  • Wong MCS, Tam WWS, Cheung CSK, Tong ELH, Sek ACH, Cheung NT, Leeder S, Griffiths S (2013) Medication adherence to first-line anti hypertensive drug class in a large Chinese population. Int J Cardiol 167(4):1438–1442

    Google Scholar 

  • Yan J, You LM, He JG, Wang JF, Chen L, Liu BL, Zhou JJ, Chen JH, Jin SY (2011) Illness perception among Chinese patients with acute myocardial infarction. Patient Educ Couns 85:398–405

    Google Scholar 

  • Zhao XQ, Jing ZJ (1996) Global asymptotic behavior in some cooperative systems of functional differential equations. Can Appl Math Q4:421–444

    Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers and the handling editor for the comments and suggestions which led to the improvement of the manuscript.

Funding

None declared.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the work.

Corresponding author

Correspondence to A. Mhlanga.

Ethics declarations

Ethical approval and consent to participate

None declared.

Consent for publication

None declared.

Competing interests

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Theorem 6

We employ the Centre Manifold Theory (Theorem 4.1 in Castillo-Chavez and Song (2004)) in order to establish the local asymptotic stability of the endemic equilibrium. Let us make the following change of variables in order to apply the Centre Manifold Theory: \(S_{m} = x_{1},~A_{m}= x_{2},~H_{m}=x_{3},~Q_{m}=x_{4},~S_{f}=x_{5},~A_{f}=x_{6},~H_{f}=x_{7}~\text{ and }~Q_{f}=x_{8}.\) We now use the vector notation \(X = (x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8})^{T}.\) Then, model system (3) can be written in the form \(\dfrac{dX}{dt} = F = (f_{1},f_{2},f_{3},f_{4},f_{5},f_{6},f_{7},f_{8})^{T},\) such that

$$\begin{aligned} \begin{array}{llll} x_{1}' = f_{1} = \Lambda _{m} - \dfrac{\beta _{f}c_{m}(x_{6}(1-\eta _{f}) + x_{7})x_{1}}{x_{5} + x_{6} + x_{7} + x_{8}} - \mu _{m}x_{1}, \\ x_{2}' = f_{2} = \dfrac{\beta _{f}c_{m}(x_{6}(1-\eta _{f}) + x_{7})x_{1}}{x_{5} + x_{6} + x_{7} + x_{8}} + \gamma _{m} x_{4} - (\mu _{m} + \kappa _{m} + \psi _{m} + \delta _{m}(1-\theta _{m}))x_{2}, \\ x_{3}' = f_{3} = \delta _{m}(1-\theta _{m})x_{2} + \gamma ^{0}_{m} x_{4} - (\mu _{m} + \kappa _{m})x_{3}, \\ x_{4}' = f_{4} = (\kappa _{m} + \psi _{m})x_{2} + \kappa _{m}x_{3} - (\gamma _{m} + \mu _{m} + \gamma ^{0}_{m})x_{4}, \\ x_{5}' = f_{5} = \Lambda _{f} - \dfrac{\beta _{m}c_{f}(x_{2}(1-\eta _{m}) + x_{3})x_{5}}{x_{1} + x_{2} + x_{3} + x_{4}} - \mu _{f}x_{5}, \\ x_{6}' = f_{6} = \dfrac{\beta _{m}c_{f}(x_{2}(1-\eta _{m}) + x_{3})x_{5}}{x_{1} + x_{2} + x_{3} + x_{4}} + \gamma _{f} x_{8} - (\mu _{f} + \kappa _{f} + \psi _{f} + \delta _{f}(1-\theta _{f}))x_{6}, \\ x_{7}' = f_{7} = \delta _{f}(1-\theta _{f})x_{6} + \gamma ^{0}_{f} x_{8} - (\mu _{f} + \kappa _{f})x_{7}, \\ x_{8}' = f_{8} = (\kappa _{f} + \psi _{f})x_{6} + \kappa _{f}x_{7} - (\gamma _{f} + \mu _{f} + \gamma ^{0}_{f})x_{8}. \\ \end{array} \end{aligned}$$
(38)

The method entails evaluating the Jacobian of system (38) at \(\mathcal {E}^{0} = (S_{m}^{0},A_{m}^{0},H_{m}^{0},Q_{m}^{0},S_{f}^{0},A_{f}^{0},H_{f}^{0},Q_{f}^{0}),\) with \(S_{m}^{0}=x_{1}^{0},~A^{0}_{m}=x_{2}^{0},~H^{0}_{m}=x_{3}^{0},~ Q^{0}_{m}=x_{4}^{0},~S^{0}_{f}=x_{5}^{0},~A^{0}_{f} =x_{6}^{0},~H^{0}_{f}=x_{7}^{0}~\text{ and }~Q_{f}^{0}=x_{8}^{0}.\) Thus,

$$\begin{aligned} J(\mathcal {E}^{0})=\begin{bmatrix} -\mu _{m} &{} 0 &{} 0 &{} 0 &{} 0 &{} -\dfrac{\beta _{f}(1-\eta _{f})\Lambda _{m} \mu _{f}}{\mu _{m} \Lambda _{f}} &{} -\dfrac{\beta _{f} \Lambda _{m} \mu _{f}}{\mu _{m} \Lambda _{f}} &{} 0 \\ 0 &{} -k_{1} &{} 0 &{} \gamma _{m} &{} 0 &{} \dfrac{\beta _{f}(1-\eta _{f})\Lambda _{m} \mu _{f}}{\mu _{m} \Lambda _{f}} &{} \dfrac{\beta _{f} \Lambda _{m} \mu _{f}}{\mu _{m} \Lambda _{f}} &{} 0 \\ 0 &{} \delta _{m}(1-\theta _{m}) &{} -k_{2} &{} \gamma _{m}^{0} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} (\mu _{m} + \kappa _{m}) &{} \kappa _{m} &{} -k_{3} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} -\dfrac{\beta _{m}(1-\eta _{m})\Lambda _{f}\mu _{m}}{\mu _{f} \Lambda _{m}} &{} -\dfrac{\beta _{m}\Lambda _{f}\mu _{m}}{\mu _{f} \Lambda _{m}} &{} 0 &{} -\mu _{f} &{} 0 &{} 0 &{} 0 \\ 0 &{} \dfrac{\beta _{m}(1-\eta _{m})\Lambda _{f}\mu _{m}}{\mu _{f} \Lambda _{m}} &{} \dfrac{\beta _{m}\Lambda _{f}\mu _{m}}{\mu _{f} \Lambda _{m}} &{} 0 &{} 0 &{} -k_{4} &{} 0 &{} \gamma _{f} \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \delta _{f}(1-\theta _{f}) &{} -k_{5} &{} \gamma ^{0}_{f} \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{f} + \mu _{f} &{} \kappa _{f} &{} -k_{6} \\ \end{bmatrix}, \end{aligned}$$
(39)

from which it can be shown that

$$\begin{aligned} R_{mf} = \sqrt{R_{m}R_{f}}, \end{aligned}$$
(40)

where

$$\begin{aligned} R_{m} = \dfrac{\beta _{m} \mu _{m} c_{f} \Lambda _{f} [(1-\eta _{m})(\mu _{m} \gamma _{m}^{0} + k_{2}(\mu _{m} + \gamma _{m})) + \gamma ^{0}_{m}(\kappa _{m} + \psi _{m}) + \delta _{m}(1-\theta _{m})k_{3}]}{\Lambda _{m} \mu _{f} [\mu _{m} k_{1} k_{2}k_{3} + \mu _{m} \gamma _{m} k_{2} + \gamma _{m} \kappa _{m} \delta _{m} (1-\theta _{m})]} \end{aligned}$$
(41)

and

$$\begin{aligned} R_{f} = \dfrac{\beta _{f} \mu _{f} c_{m} \Lambda _{m} [(1-\eta _{f})(\mu _{f} \gamma _{f}^{0} + k_{5}(\mu _{f} + \gamma _{f})) + \gamma ^{0}_{f}(\kappa _{f} + \psi _{f}) + \delta _{f}(1-\theta _{f})k_{6}]}{\Lambda _{f} \mu _{m} [\mu _{f} k_{4} k_{5}k_{6} + \mu _{f} \gamma _{f} k_{5} + \gamma _{f} \kappa _{f} \delta _{f} (1-\theta _{f})]}. \end{aligned}$$
(42)

Now let us consider \(\beta _{f} = \rho \beta _{m},\) regardless of whether \(\rho ~\in ~(0,1)\) or \(\rho ~\ge ~1.\) Taking \(\beta _{f}\) as a bifurcation parameter and considering the case \(R_{mf}=1\) and solving for \(\beta _{m},\) we obtain

$$\begin{aligned} \beta _{m} =\beta ^{*} = \sqrt{H_{m}H_{f}}, \end{aligned}$$
(43)

where

$$\begin{aligned} H_{m} = \dfrac{\Lambda _{m} \mu _{f} [\mu _{m} k_{1} (\mu _{m} + \kappa _{m})(\mu _{m} + \kappa _{m} + \gamma _{m}^{0}) + \mu _{m} \gamma _{m} (\mu _{m} + \kappa _{m}) + \gamma _{m} \kappa _{m} \delta _{m} (1-\theta _{m})]}{\mu _{m} c_{f} \Lambda _{f} [(1-\eta _{m})(\mu _{m} \gamma _{m}^{0} + (\mu _{m} + \kappa _{m})(\mu _{m} + \gamma _{m})) + \gamma ^{0}_{m}(\kappa _{m} + \psi _{m}) + \delta _{m}(1-\theta _{m})(\gamma _{m} + \gamma ^{0}_{m} + \mu _{m})]} \end{aligned}$$
(44)

and

$$\begin{aligned} H_{f} = \dfrac{\Lambda _{f} \mu _{m} [\mu _{f} (\mu _{f} + \kappa _{f} + \psi _{f} + \delta _{f} (1-\theta _{f})) (\mu _{f} + \kappa _{f})(\mu _{f} + \kappa _{f} + \gamma _{f}^{0}) + \mu _{f} \gamma _{f} (\mu _{f} + \kappa _{f}) + \gamma _{f} \kappa _{f} \delta _{f} (1-\theta _{f})]}{\rho \mu _{f} c_{m} \Lambda _{m} [(1-\eta _{f})(\mu _{f} \gamma _{f}^{0} + (\mu _{f} + \kappa _{f})(\mu _{f} + \gamma _{f})) + \gamma ^{0}_{f}(\kappa _{f} + \psi _{f}) + \delta _{f}(1-\theta _{f})(\gamma _{f} + \gamma ^{0}_{f} + \mu _{f})]}. \end{aligned}$$
(45)

Note that the linearised system of the transformed equation (38) with the bifurcation point \(\beta ^{*}\) has a simple zero eigenvalue. Hence the Centre Manifold Theory (Castillo-Chavez and Song 2004) can be used to analyze the dynamics of system (38) near \(\beta _{m} = \beta ^{*}\). It can be shown that the Jacobian of system (38) has a right eigenvector associated with the following zero eigenvalue given by \(u=(u_{1},u_{2},u_{3},u_{4},u_{5},u_{6},u_{7},u_{8})^{T},\) where

$$\begin{aligned} \left\{ \begin{array}{llll} u_{1} = -\beta _{f}c_{m}\dfrac{\Lambda _{m} \mu _{f}}{\mu ^{2}_{m}\Lambda _{f}}(u_{6} (1-\eta _{f}) + u_{7})<0,~ u_{2}= \dfrac{[\kappa _{m}(\gamma _{m}+\mu _{m}) + \mu _{m}(\gamma _{m} + \mu _{m} +\gamma ^{0}_{m})]}{\delta _{m}(1-\theta _{m})[k_{2}(\mu _{m} + \kappa _{m}) + \kappa _{m}\delta _{m}(1-\theta _{m})]}u_{4}>0,~~\\ u_{3} = \dfrac{[\gamma _{m}^{0}(\mu _{m} + \kappa _{m}) + k_{3}\delta _{m}(1-\theta _{m})]}{k_{2}(\mu _{m}+\kappa _{m}) + \kappa _{m} \delta _{m} (1-\theta _{m})}u_{4}> 0,~u_{4}>0,~u_{5} = -\beta _{m}c_{f}\dfrac{\Lambda _{f} \mu _{m}}{\mu ^{2}_{f}\Lambda _{m}}(u_{2} (1-\eta _{m}) + u_{3})<0, \\ u_{6} = \dfrac{[\kappa _{f}(\gamma _{f}+\mu _{f}) + \mu _{f}(\gamma _{f} + \mu _{f} +\gamma ^{0}_{f})]}{\delta _{f}(1-\theta _{f})[k_{5}(\mu _{f} + \kappa _{f}) + \kappa _{f}\delta _{f}(1-\theta _{f})]}u_{8}>0,~u_{7} = \dfrac{[\gamma _{f}^{0}(\mu _{f} + \kappa _{f}) + k_{3}\delta _{f}(1-\theta _{f})]}{k_{5}(\mu _{f}+\kappa _{f}) + \kappa _{f} \delta _{f} (1-\theta _{f})}u_{8}> 0, \\ u_{8} > 0. \end{array} \right. \end{aligned}$$
(46)

The left eigenvector of \(J(\mathcal {E}^{0})\) associated with the zero eigenvalue at \(\beta _{m} = \beta ^{*}\) is given by

\(v=(v_{1},v_{2},v_{3},v_{4},v_{5},v_{6},v_{7},v_{8})^{T},\) where

$$\begin{aligned} \left\{ \begin{array}{llll} v_{1} = v_{5} = 0,~v_{3} = \dfrac{\kappa _{m} v_{4} + \mathcal {H}_{1} v_{6}}{k_{2}}~>0,~v_{4}> 0, \\ v_{2} = \bigg (\dfrac{\delta _{m}(1-\theta _{m})\kappa _{m}}{k_{1}k_{2}} + \dfrac{\mu _{m} + \kappa _{m}}{k_{1}} \bigg )v_{4} + \bigg (\dfrac{\delta _{m}(1-\theta _{m})\mathcal {H}_{2}}{k_{1}k_{2}} + \dfrac{\mathcal {H}_{1}}{k_{1}} \bigg )v_{6}>0,~v_{6}> 0 \\ v_{7} = \bigg ( \dfrac{\delta _{m}(1-\theta _{m})\kappa _{m}}{k_{1}k_{2}} + \dfrac{\mu _{m} + \kappa _{m}}{k_{1}} \bigg )\dfrac{k_{2} \mathcal {H}_{3}v_{4}}{M}+ \bigg ( \gamma _{f} \kappa _{f} + \dfrac{k_{2} \mathcal {H}_{1} \mathcal {H}_{3}}{k_{1}} + \dfrac{k_{2}\delta _{m}(1-\theta _{m})\mathcal {H}_{2}\mathcal {H}_{3}}{k_{1}k_{2}}\bigg ) \dfrac{v_{6}}{M}> 0, \\ v_{8} = \bigg (\dfrac{k_{2}\delta _{m}(1-\theta _{m})k_{m}\mathcal {H}_{3}}{k_{1}k_{2}} + \dfrac{k_{2}(\mu _{m}+\kappa _{m})\mathcal {H}_{3}}{k_{1}} \bigg )\dfrac{\gamma _{f}^{0}v_{4}}{M} \\ ~~~+ \bigg (\dfrac{\gamma _{f} M}{\gamma ^{0}_{f}} + \gamma _{f}\kappa _{f} + \dfrac{\mathcal {H}_{1}\mathcal {H}_{3}}{k_{1}} + \dfrac{k_{2}\delta _{m}(1-\theta _{m}) \mathcal {H}_{2}\mathcal {H}_{3}}{k_{1}k_{2}} \bigg ) \dfrac{\gamma _{f}^{0}v_{6}}{M} > 0, \end{array} \right. \end{aligned}$$
(47)

with

$$\begin{aligned} M = \kappa _{f} (\gamma _{f} + \mu _{f}) + \mu _{f}k_{6},~ \mathcal {H}_{1} = \dfrac{\beta _{m}(1-\eta _{m})\Lambda _{f}\mu _{m}}{\mu _{f} \Lambda _{m}},~ \mathcal {H}_{2} = \dfrac{\beta _{m}\Lambda _{f}\mu _{m}}{\mu _{f} \Lambda _{m}}, ~ \mathcal {H}_{3} = \dfrac{\beta _{f}(1-\eta _{f})\Lambda _{m}\mu _{f}}{\mu _{m} \Lambda _{f}}, \mathcal {H}_{4} = \dfrac{\beta _{f}(1-\eta _{f})\Lambda _{m}\mu _{f}}{\mu _{m} \Lambda _{f}}. \end{aligned}$$

Then we use Theorem (4.1) from Castillo-Chavez and Song (2004), stated below for elucidation.

Theorem 8

Consider the following general system of ordinary differential equations with a parameter \(\phi ,\)

$$\begin{aligned} \displaystyle \frac{dx}{dt}=f(x,\phi ),~\text{ with }~f:\mathbb {R}^{n} \times \mathbb {R} \rightarrow \mathbb {R} ~ and ~ f \in ~C^{2}~ ~( \mathbb {R}^{n} \times \mathbb {R}), \end{aligned}$$
(48)

where 0 is an equilibrium of the system, that is \(f(0,\phi )=0 ~ ~\forall \phi\), and assume

  1. A1)

    \(A=D_{x}f(0,0)=\bigg (\displaystyle \frac{\partial f_{i}}{\partial x_{j}}(0,0)\bigg )\) is the linearisation matrix of system (3) around the equilibrium 0 and \(\phi\) evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts.

  2. A2)

    Matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero eigenvalue. Let \(f_{k}\) be the \(k^{th}\) component of f and

    $$\begin{aligned} a= & {} \sum _{k,i,j=1}^n v_{k} u_{i} u_{j} \displaystyle \frac{\partial ^{2}f_{k}}{\partial x_{i} \partial x_{j}}(0,0), \nonumber \\ b= & {} \sum _{k,i=1}^n v_{k} u_{i} \displaystyle \frac{\partial ^{2}f_{k}}{\partial x_{i} \partial \phi }(0,0). \end{aligned}$$
    (49)

The local dynamics of (48) around zero is totally governed by a and b.

  1. i.

     \(a>0,~ b>0\). When \(\phi < 0\) with \(\mid \phi \mid<< 1\), 0 is locally asymptotically stable, there exists a positive unstable equilibrium. When \(0< \phi<< 1\), 0 is unstable and there exists a negative and locally asymptotically stable equilibrium;

  2. ii.

      \(a<0,~b<0\). When \(\phi <0\) with \(\mid \phi \mid<< 1\), 0 is unstable; when \(0< \phi<< 1\), 0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

  3. iii.

    \(a>0,~b<0\). When \(\phi <0\) with \(\mid \phi \mid<< 1\), 0 is unstable, and there exists a locally asymptotically stable negative equilibrium; when \(0< \phi<< 1\), 0 is stable, and a positive unstable equilibrium exists;

  4. iv.

    \(a<0,~b>0\). When \(\phi\) changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

1.1 Computation of the Bifurcation Parameters a and b

For model system (38), the associated non-zero partial derivatives of F at the infection-free equilibrium are given by:

$$\begin{aligned} \begin{array}{llll} \dfrac{\partial ^{2} f_{2}}{\partial x_{1}\partial x_{6}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{6}\partial x_{1}} = -\beta _{f}c_{m}(1-\eta _{f})\dfrac{\mu _{f}}{\Lambda _{f}},~~\dfrac{\partial ^{2} f_{2}}{\partial x_{5}\partial x_{6}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{6}\partial x_{5}} = -\dfrac{\beta _{f} c_{m} (1-\eta _{f}) \Lambda _{m} \mu _{f}^{2}}{\mu _{m} \Lambda _{f}^{2}},\\ \dfrac{\partial ^{2} f_{2}}{\partial x_{6}^{2}} = \dfrac{-2\beta _{f}c_{m}(1-\eta _{f}) \Lambda _{m} \mu _{f}^{2}}{\mu _{m} \Lambda _{f}^{2}},~\dfrac{\partial ^{2} f_{2}}{\partial x_{6} \partial x_{7}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{7} \partial x_{6}} = -\dfrac{\beta _{f} c_{m} \Lambda _{m} \mu _{f}^{2}}{\mu _{m} \Lambda _{f}^{2}} - \dfrac{\beta _{f} c_{m} (1-\eta _{f})\Lambda _{m} \mu _{f}^{2}}{\mu _{m} \Lambda _{f}^{2}} \\ \dfrac{\partial ^{2} f_{2}}{\partial x_{6} \partial x_{8}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{8} \partial x_{6}} = - \dfrac{\beta _{f} c_{m} (1-\eta _{f})\Lambda _{m} \mu _{f}^{2}}{\mu _{m} \Lambda _{f}^{2}},~\dfrac{\partial ^{2} f_{2}}{\partial x_{1}\partial x_{7}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{7}\partial x_{1}} = -\beta _{f}c_{m}\dfrac{\mu _{f}}{\Lambda _{f}}, \\ \dfrac{\partial ^{2} f_{2}}{\partial x_{5} \partial x_{7}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{7} \partial x_{5}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{7} \partial x_{8}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{8} \partial x_{7}} = -\dfrac{\beta _{f} c_{m} \Lambda _{m} \mu _{f}^{2}}{\mu _{m} \Lambda _{f}^{2}} \\ \dfrac{\partial ^{2} f_{2}}{\partial x_{7}^{2}} = \dfrac{ -2 \beta _{f}c_{m}\mu _{f}^{2} \Lambda _{m}}{\Lambda _{f}^{2} \mu _{m}},~ \dfrac{\partial ^{2} f_{2}}{\partial x_{6}\partial x_{7}} = \dfrac{\partial ^{2} f_{2}}{\partial x_{7}\partial x_{6}} = -\dfrac{\beta _{f}c_{m}\mu _{f}^{2} \Lambda _{m}}{\Lambda _{f}^{2} \mu _{m}} - \dfrac{\beta _{f}c_{m}(1-\eta _{f})\mu _{f}^{2} \Lambda _{m}}{\Lambda _{f}^{2} \mu _{m}} \\ \dfrac{\partial ^{2} f_{6}}{\partial x_{1}\partial x_{2}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{2}\partial x_{1}} = -\dfrac{\beta _{m}c_{f}(1-\eta _{m})\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}},~~\dfrac{\partial ^{2} f_{6}}{\partial x_{1}\partial x_{3}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{3}\partial x_{1}} = -\dfrac{\beta _{m}c_{f} \Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}}, \\ \dfrac{\partial ^{2} f_{6}}{\partial x_{2}\partial x_{3}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{3}\partial x_{2}} = -\dfrac{\beta _{m}c_{f}(1-\eta _{m})\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}} - \dfrac{\beta _{m}c_{f}\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}},~\dfrac{\partial ^{2} f_{6}}{\partial x_{2}\partial x_{4}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{4}\partial x_{2}} = -\dfrac{\beta _{m}c_{f}(1-\eta _{m})\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}}, \\ \dfrac{\partial ^{2} f_{6}}{\partial x_{2}\partial x_{5}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{5}\partial x_{2}} = -\dfrac{\beta _{m}c_{f}(1-\eta _{m}) \mu _{m}}{\Lambda _{m}},~\dfrac{\partial ^{2} f_{6}}{\partial x_{3}\partial x_{4}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{4}\partial x_{3}} = -\dfrac{\beta _{m}c_{f}\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}}, \\ \dfrac{\partial ^{2} f_{6}}{\partial x_{3}\partial x_{5}} = \dfrac{\partial ^{2} f_{6}}{\partial x_{5}\partial x_{3}} = -\dfrac{\beta _{m}c_{f}\mu ^{2}}{ \Lambda _{m}},~\dfrac{\partial ^{2} f_{6}}{\partial x_{3}^{2}} = - \dfrac{2 \beta _{m} c_{f}\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}},~\dfrac{\partial ^{2} f_{6}}{\partial x_{2}^{2}} = - \dfrac{2 \beta _{m} c_{f} (1-\eta _{m})\Lambda _{f} \mu ^{2}_{m}}{\mu _{f} \Lambda _{m}^{2}}. \\ \end{array} \end{aligned}$$
(50)

From (50) it follows that

$$\begin{aligned} a= & {} -2\beta _{m}c_{f}(1-\eta _{m})\dfrac{\mu _{m}^{2} \Lambda _{f} v_{6}}{\Lambda _{m}^{2}\mu _{f}}(u_{2}(1-\eta _{m}) + u_{3})(u_{1}+u_{2} + u_{3} + u_{4}) + 2\beta _{m}c_{f}v_{2}u_{5}\dfrac{\mu _{m}^{2}}{\Lambda _{m}^{2}}(u_{2}(1-\eta _{m}) + u_{3}) \nonumber \\&-2\beta _{f}c_{m}(1-\eta _{f})\dfrac{\mu _{f}^{6} \Lambda _{m} v_{2}}{\Lambda _{f}^{2}\mu _{m}}(u_{6}(1-\eta _{f}) + u_{7})(u_{5}+u_{6} + u_{6} + u_{8}) + 2\beta _{f}c_{m}v_{6}u_{1}\dfrac{\mu _{f}^{2}}{\Lambda _{f}^{2}}(u_{6}(1-\eta _{f}) + u_{7}) \nonumber \\&< 0.~~ \end{aligned}$$
(51)

The sign of b is associated with the following non-vanishing partial derivatives of F : 

$$\begin{aligned} \dfrac{\partial ^{2} f_{6}}{\partial x_{2}\partial {\beta ^{*}}} = \dfrac{c_{f} (1-\eta _{m}) \mu _{m} \Lambda _{f}}{\Lambda _{m} \mu _{f}},~\dfrac{\partial ^{2} f_{6}}{\partial x_{3}\partial {\beta ^{*}}} = \dfrac{c_{f} \mu _{m} \Lambda _{f}}{\Lambda _{m} \mu _{f}},~\dfrac{\partial ^{2} f_{2}}{\partial x_{6}\partial {\beta ^{*}}} = \dfrac{\rho c_{m} (1-\eta _{f}) \mu _{f} \Lambda _{m}}{\Lambda _{f} \mu _{m}},~\dfrac{\partial ^{2} f_{2}}{\partial x_{7}\partial {\beta ^{*}}} = \dfrac{\rho c_{m} \mu _{f} \Lambda _{m}}{\Lambda _{f} \mu _{m}}. \end{aligned}$$
(52)

It follows from the expressions in (52) that

$$\begin{aligned} b = \dfrac{\Lambda _{f} \mu _{m}}{\mu _{f} \Lambda _{m}} c_{m} v_{2}(u_{2}(1-\eta _{m}) + u_{3}) + \dfrac{\Lambda _{m} \mu _{f}}{\mu _{m} \Lambda _{f}} c_{f} v_{6}(u_{6}(1-\eta _{f}) + u_{7}) > 0. \end{aligned}$$
(53)

Thus, \(b > 0\) and \(a < 0\), and using Theorem (4.1) item (iv) from Castillo-Chavez and Song (2004) we establish Theorem 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhlanga, A., Mushayabasa, S. Computational and Theoretical Analysis of the Association Between Gender and HSV-2 Treatment Adherence. Acta Biotheor 69, 117–149 (2021). https://doi.org/10.1007/s10441-020-09392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-020-09392-x

Keywords

Navigation