Skip to main content
Log in

Wound Healing and Scale Modelling in Zebrafish

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

We propose to study the wound healing in Zebrafish by using firstly a differential approach for modelling morphogens diffusion and cell chemotactic motion, and secondly a hybrid model of tissue regeneration, where cells are considered as individual objects and molecular concentrations are described by partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alfaro M (2006) Systèmes de convection–réaction–diffusion et dynamique d’interface. Thesis, University Paris Sud

  • Araújo SJ (2015) The hedgehog signalling pathway in cell migration and guidance: what we have learned from Drosophila melanogaster. Cancers 7(2):2012–2022

    Article  Google Scholar 

  • Blaschko A (1901) Die Nervenverteilung in der Haut in ihrer Beziehung zu den Erkrankungen der Haut. Bericht from VII Congress der Deutschen Dermatologischen Gesellschaft, Breslau

  • Borges AF (1984) Relaxed skin tension lines (RSTL) versus other skin lines. Plast Reconstr Surg 73(1):144–150

    Article  Google Scholar 

  • Chuong CM (1998) Molecular basis of epithelial appendage morphogenesis. Landes Company, Austin

    Google Scholar 

  • Dhouailly D, Olivera-Martinez I, Fliniaux I, Missier S, Viallet JP, Thélu J (2004) Skin field formation: morphogenetic events. Int J Dev Biol 48(2–3):85–91

    Article  Google Scholar 

  • Friedman A, Xue C (2011) A mathematical model for chronic wound. Math Biosci Eng 8(2):253–261

    Article  Google Scholar 

  • Huh SH, Närhi K, Lindfors PH, Häarä O, Yang L, Ornitz DM, Mikkola ML (2013) Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev 27(4):450–458

    Article  Google Scholar 

  • Iwamoto M, Ueyama D, Kobayashi R (2014) The advantage of mucus for adhesive locomotion in gastropods. J Theor Biol 353:133–141

    Article  Google Scholar 

  • James R (1993) Linear skin rashes and the meridians of acupuncture. Eur J Orient Med 1(1):42–46

    Google Scholar 

  • Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26:399–415

    Article  Google Scholar 

  • Kraissl CJ (1951) The selection of appropriate lines for elective surgical incisions. Plast Reconstr Surg (1946) 8(1):1–28

    Article  Google Scholar 

  • Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D (2008) Bmp2 and bmp7 play antagonistic roles in feather induction. Development 135(16):2797–2805

    Article  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Berlin

    Book  Google Scholar 

  • Olivera-Martinez I, Viallet JP, Michon F, Pearton DJ, Dhouailly D (2004) The different steps of skin formation in vertebrates. Int J Dev Biol 48:107–116

    Article  Google Scholar 

  • Oster GF, Murray JD, Maini PK (1985) A model for chondrogenic condensations in the developing limb. J Embryol Exp Morphol 89(11):93–112

    Google Scholar 

  • Perthame B, Dalibard AL (2009) Existence of solutions of the hyperbolic Keller-Segel model. Trans Am Math Soc 361(5):2319–2335

    Article  Google Scholar 

  • Postlethwaite AE, Keski-Oja J, Balian G, Kang AH (1981) Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment. J Exp Med 153(2):494–499

    Article  Google Scholar 

  • Ridge MD, Wright V (1966) The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines. J Invest Dermatol 46(4):341–346

    Article  Google Scholar 

  • Sgonc R, Gruber J (2013) Age-related aspects of cutaneous wound healing: a mini-review. Gerontology 59(2):159–164

    Article  Google Scholar 

  • Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887

    Article  Google Scholar 

  • Sire JY, Akimenko MA (2004) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (danio rerio). Int J Dev Biol 48(2–3):233–247

    Article  Google Scholar 

  • Thibault MM, Hoemann CD, Buschmann MD (2007) Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev 16(3):489–502

    Article  Google Scholar 

  • Tracqui P, Ohayon J (2004) Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model. Acta Biotheor 52(4):323–341

    Article  Google Scholar 

  • Tracqui P, Namy P, Ohayon J (2005) Cellular networks morphogenesis induced by mechanically stressed microenvironments. J Biol Phys Chem 5(2–3):57–69

    Google Scholar 

  • Tranquillo RT, Murray J (1992) Continuum model of fibroblast-driven wound contraction: inflammation-mediation. J Theor Biol 158(2):135–172

    Article  Google Scholar 

  • Viallet J, Prin F, Olivera-Martinez I, Hirsinger E, Pourquie O, Dhouailly D (1998) Chick delta-1 gene expression and the formation of the feather primordia. Mech Dev 72(1):159–168

    Article  Google Scholar 

  • Wilhelmi BJ, Blackwell SJ, Phillips LG (1999) Langer’s lines: to use or not to use. Plast Reconstr Surg 104(1):208–214

    Article  Google Scholar 

  • Zallen JA (2007) Planar polarity and tissue morphogenesis. Cell 129(6):1051–1063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Demongeot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraguel, F., Bessonov, N., Demongeot, J. et al. Wound Healing and Scale Modelling in Zebrafish. Acta Biotheor 64, 343–358 (2016). https://doi.org/10.1007/s10441-016-9298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9298-8

Keywords

Navigation