Skip to main content
Log in

Determine a Space-Dependent Source Term in a Time Fractional Diffusion-Wave Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper is devoted to identify a space-dependent source term in a multi-dimensional time fractional diffusion-wave equation from a part of noisy boundary data. Based on the series expression of solution for the direct problem, we improve the regularity of the weak solution for the direct problem under strong conditions. And we obtain the uniqueness of inverse space-dependent source term problem by the Titchmarsh convolution theorem and the Duhamel principle. Further, we use a non-stationary iterative Tikhonov regularization method combined with a finite dimensional approximation to find a stable source term. Numerical examples are provided to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antil, H., Otárola, E., Salgado, A.J.: Optimization with respect to order in a fractional diffusion model: analysis, approximation and algorithmic aspects. J. Sci. Comput. 77(1), 204–224 (2018)

    Article  MathSciNet  Google Scholar 

  2. Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: Multilevel methods for nonuniformly elliptic operators and fractional diffusion. Math. Comput. 85(302), 2583–2607 (2016)

    Article  MathSciNet  Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Vol. I. Interscience, New York (1953)

    MATH  Google Scholar 

  4. Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18(2), 342–360 (2015)

    Article  MathSciNet  Google Scholar 

  5. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  6. D’Elia, M., Gunzburger, M.: Identification of the diffusion parameter in nonlocal steady diffusion problems. Appl. Math. Optim. 73(2), 227–249 (2016)

    Article  MathSciNet  Google Scholar 

  7. Doss, R.: An elementary proof of Titchmarsh’s convolution theorem. Proc. Am. Math. Soc. 104(1), 181–184 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998–3007 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fujishiro, K., Kian, Y.: Determination of time dependent factors of coefficients in fractional diffusion equations. Math. Control Relat. Fields 6(2), 251–269 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hanke, M., Groetsch, C.W.: Nonstationary iterated Tikhonov regularization. J. Optim. Theory Appl. 98(1), 37–53 (1998)

    Article  MathSciNet  Google Scholar 

  11. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Applied Mathematical Sciences, vol. 127. Springer, New York (2006)

    MATH  Google Scholar 

  12. Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  Google Scholar 

  13. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  14. Li, J., Guo, B.: Parameter identification in fractional differential equations. Acta Math. Sci. Ser. B Engl. Ed. 33(3), 855–864 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, G.S., Zhang, D.L., Jia, X.Z., Yamamoto, M.: Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 29(6), 065014 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lions, J.L., Magenes, E.: Problémes aux limites non homogénes et applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968)

    MATH  Google Scholar 

  17. Liu, Y., Rundell, W., Yamamoto, M.: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19(4), 888–906 (2016)

    Article  MathSciNet  Google Scholar 

  18. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)

    Article  MathSciNet  Google Scholar 

  19. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)

    Article  MathSciNet  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  21. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  22. Slodicka, M., Siskova, K.: An inverse source problem in a semilinear time-fractional diffusion equation. Comput. Math. Appl. 72(6), 1655–1669 (2016)

    Article  MathSciNet  Google Scholar 

  23. Sun, L., Wei, T.: Identification of the zeroth-order coefficient in a time fractional diffusion equation. Appl. Numer. Math. 111, 160–180 (2017)

    Article  MathSciNet  Google Scholar 

  24. Tatar, S., Ulusoy, S.: An inverse source problem for a one-dimensional space-time fractional diffusion equation. Appl. Anal. 94(11), 2233–2244 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, J.G., Wei, T.: Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation. Appl. Math. Model. 39(20), 6139–6149 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, W., Yamamoto, M., Han, B.: Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation. Inverse Probl. 29(9), 095009 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)

    Article  MathSciNet  Google Scholar 

  28. Wei, T., Wang, J.G.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78(4), 95–111 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wei, T., Li, X.L., Li, Y.S.: An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 32(8), 085003 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wei, T., Sun, L., Li, Y.: Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation. Appl. Math. Lett. 61, 108–113 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27(11), 2782–2785 (1986)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Z.Q., Wei, T.: Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 219(11), 5972–5983 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, Y., Xu, X.: Inverse source problem for a fractional diffusion equation. Inverse Probl. 27(3), 035010 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by the NSF of China (11371181, 11771192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X.B., Wei, T. Determine a Space-Dependent Source Term in a Time Fractional Diffusion-Wave Equation. Acta Appl Math 165, 163–181 (2020). https://doi.org/10.1007/s10440-019-00248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00248-2

Keywords

Navigation