Skip to main content
Log in

Stochastic Quantization for the Fractional Edwards Measure

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We prove that there exists a diffusion process whose invariant measure is the fractional polymer or Edwards measure for fractional Brownian motion, \(\mu_{ {g,H}}\), \(H\in (0,1)\) for \(dH < 1\). The diffusion is constructed in the framework of Dirichlet forms in infinite dimensional (Gaussian) analysis. Moreover, the process is invariant under time translations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Röckner, M.: Stochastic differential equations in infinite dimensions, solutions via Dirichlet forms. Probab. Theory Relat. Fields 89, 347–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Hu, Y.-Z., Röckner, M., Zhou, X.Y.: Stochastic quantization of the two-dimensional polymer measure. Appl. Math. Optim. 40, 341–354 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bass, R.F., Khoshnevisan, D.: Intersection local times and Tanaka formulas. Ann. Inst. Henri Poincaré 29, 419–451 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Berezansky, Yu.M., Kondratiev, Yu.G.: Spectral Methods in Infinite-Dimensional Analysis. Naukova Dumka, Kiev (1988) (in Russian). English translation, Kluwer Academic Publishers, Dordrecht, 1995

    Google Scholar 

  5. Bock, W., Fattler, T., Streit, L.: Stochastic Quantization of the fractional Edwards measure in the case \(Hd=1\), in preparation

  6. Bock, W., Fattler, T., Streit, L., Tse, O.: Discrete fractional polymer measures: stochastic quantization and numerics, in preparation

  7. de Faria, M., Drumond, C., Streit, L.: The renormalization of self-intersection local times. I. The chaos expansion. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(2), 223–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dvoretzky, A., Erdös, P., Kakutani, S.: Double points of paths of Brownian motion in n-space. Acta Sci. Math. 12, 75–81 (1950)

    MathSciNet  MATH  Google Scholar 

  9. Dvoretzky, A., Erdös, P., Kakutani, S., Taylor, S.J.: Triple points of the Brownian motion in 3-space. Proc. Camb. Philos. Soc. 53, 856–862 (1957)

    Article  MATH  Google Scholar 

  10. Fukushima, M., Oshima, Y., Takeda, T.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  11. He, S.W., Yang, W.Q., Yao, R.Q., Wang, J.G.: Local times of self-intersection for multidimensional Brownian motion. Nagoya Math. J. 138, 51–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hida, T.: Stationary Stochastic Processes. Mathematical Notes Series. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  13. Hida, T., Kuo, H.H., Potthoff, J., Streit, L.: White Noise. an Infinite Dimensional Calculus. Kluwer, Dordrecht (1993), 516 pp.

    MATH  Google Scholar 

  14. Hu, Y.: Self-intersection local time of fractional Brownian motions—via chaos expansion. J. Math. Kyoto Univ. 41, 233–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, Y., Kallianpur, G.: Exponential integrability and application to stochastic quantization. Appl. Math. Optim. 37, 295–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, Y., Nualart, D.: Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, Y., Nualart, D.: Regularity of renormalized self-intersection local time for fractional Brownian motion. Commun. Inf. Syst. 7, 21–30 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Hu, Y., Nualart, D., Song, J.: Integral representation of renormalized self-intersection local times. J. Funct. Anal. 255(9), 2507–2532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y., Øksendal, B.: Fractional white noise calculus and applications to finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 06(1), 1–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Imkeller, P., Pérez-Abreu, V., Vives, J.: Chaos expansions of double intersection local times of Brownian motion in \(\mathbb{R}^{d}\) and renormalization. Stoch. Process. Appl. 56, 1–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976)

    MATH  Google Scholar 

  22. Kondratiev, Yu.G., Streit, L., Westerkamp, W.: A note on positive distributions in Gaussian analysis. Ukr. Math. J. 47(5), 749–759 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Gall, J.F.: Sur le temps local d’intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. In: Sém. Prob. XIX. Lecture Notes in Mathematics, vol. 1123, pp. 314–331. Springer, Berlin (1985)

    Google Scholar 

  24. Lévy, P.: Le mouvement brownien plan. Am. J. Math. 62, 487–550 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lyons, T.J.: The critical dimension at which quasi-every Brownian motion is self-avoiding. Adv. Appl. Probab. Spec. Suppl., 87–99 (1986)

    MATH  Google Scholar 

  26. Ma, Z.-M., Röckner, M.: An Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  27. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and Its Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Obata, N.: White Noise Calculus and Fock Spaces. LNM, vol. 1577. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  29. Parisi, G., Wu, Y.-S.: Perturbation theory without gauge fixing. Sci. Sin. 24, 483 (1981)

    MathSciNet  Google Scholar 

  30. Potthoff, J.: On differential operators in white noise analysis. Acta Appl. Math. 63, 333–347 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Symanzik, K.: Euclidean quantum field theory. In: Jost, R. (ed.) Local Quantum Theory. Academic Press, New York (1969)

    Google Scholar 

  32. Varadhan, S.R.S.: Appendix to “Euclidean quantum field theory” by K. Symanzik. In: Jost, R. (ed.) Local Quantum Theory. Academic Press, New York (1969)

    Google Scholar 

  33. Watanabe, H.: The local time of self-intersections of Brownian motions as generalized Brownian functionals. Lett. Math. Phys. 23, 1–9 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Westwater, J.: On Edward’s model for long polymer chains. Commun. Math. Phys. 72, 131–174 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wolpert, R.: Wiener path intersection and local time. J. Funct. Anal. 30, 329–340 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yor, M.: Renormalisation et convergence en loi pour les temps locaux d’intersection du mouvement brownien dans \({\mathbb{R}}^{3}\). In: Séminaire de Probabilité. Lecture Notes in Mathematics, vol. 1123, pp. 350–365. Springer, Berlin (1985)

    Google Scholar 

Download references

Acknowledgements

We truly thank M. Röckner for helpful discussions. Furthermore we thank M. Grothaus and M. J. Oliveira for helpful comments. Moreover, the authors are grateful for the referee’s constructive comments. Financial support by CRC 701 and the mathematics department of the University of Kaiserslautern for research visits at Bielefeld university are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bock, W., Fattler, T. & Streit, L. Stochastic Quantization for the Fractional Edwards Measure. Acta Appl Math 151, 81–88 (2017). https://doi.org/10.1007/s10440-017-0103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-017-0103-8

Keywords

Navigation