Skip to main content
Log in

The Coexistence States of a Predator-Prey Model with Nonmonotonic Functional Response and Diffusion

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, a predator-prey model with nonmonotonic functional response is concerned. Using spectrum analysis and bifurcation theory, the bifurcating solution and its stability of the model are investigated. We discuss the bifurcation solution which emanates from the semi-trivial solution by taking the death rate as a bifurcation parameter. Furthermore, by fixed point’s index theory, the result of existence or nonexistence of positive steady states of the model is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–723 (1968)

    Article  Google Scholar 

  3. Blat, J., Brown, K.J.: Bifurcation of steady-state solutions in predator-prey and competition systems. Proc. R. Soc. Edinburgh Sect. A 97, 21–34 (1984)

    MATH  MathSciNet  Google Scholar 

  4. Blat, J., Brown, K.J.: Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal. 17, 1339–1352 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brown, K.J.: Nontrivial solutions of predator-prey systems with small diffusions. Nonlinear Anal. 11, 685–689 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bush, A.W., Cook, A.E.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theor. Biol. 63, 385–395 (1976)

    Article  Google Scholar 

  7. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–181 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dancer, E.N.: On the indices of fixed points of mappings in cones and applications. J. Math. Anal. Appl. 91, 131–151 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Monographs and Textbooks in Pure and Applied Mathematics, vol. 57. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  10. Hsu, S.B.: On global stability of a predator-prey system. Math. Biosci. 39, 1–10 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kooij, R.E., Zegeling, A.: Qualitative properties of two-dimensional predator-prey systems. Nonlinear Anal. 29, 693–715 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, L.G.: Coexistence theorems of steady states for predator-prey interacting systems. Trans. Am. Math. Soc. 305, 143–166 (1988)

    Article  MATH  Google Scholar 

  13. Li, L.G., Logan, R.: Positive solutions to general elliptic competition models. Differ. Integral Equ. 4, 817–834 (1991)

    MATH  MathSciNet  Google Scholar 

  14. Mckenna, P.J., Walter, W.: On the Dirichlet problem for elliptic systems. Appl. Anal. 21, 207–224 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pang, P.Y.H., Wang, M.X.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 88, 135–157 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ruan, S.G., Xiao, D.M.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, New York (1999)

    Google Scholar 

  18. Sugie, J., Kohno, R., Miyazaki, R.: On a predator-prey system of Holling type. Proc. Am. Math. Soc. 125, 2041–2050 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wu, J.H., Wei, G.S.: Coexistence states for cooperative model with diffusion. Comput. Math. Appl. 43, 1277–1290 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xiao, D.M., Ruan, S.G.: Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differ. Equ. 176, 494–510 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yamada, Y.: Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions. SIAM J. Math. Anal. 21, 327–345 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Jia.

Additional information

Supported by the National Science Foundation of China (10571115).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Y., Wu, J. & Nie, H. The Coexistence States of a Predator-Prey Model with Nonmonotonic Functional Response and Diffusion. Acta Appl Math 108, 413–428 (2009). https://doi.org/10.1007/s10440-008-9319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9319-y

Keywords

Mathematics Subject Classification (2000)

Navigation