Skip to main content
Log in

Ex Vivo Modeling of Atrioventricular Valve Mechanics in Single Ventricle Physiology

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Single ventricle physiology (SVP) is used to describe any congenital heart lesion that is unable to support independent pulmonary and systemic circulations. Current treatment strategies rely on a series of palliation surgeries that culminate in the Fontan physiology, which relies on the single functioning ventricle to provide systemic circulation while passively routing venous return through the pulmonary circulation. Despite significant reductions in early mortality, the presence of atrioventricular valve (AVV) regurgitation is a key predictor of heart failure in these patients. We sought to evaluate the biomechanical changes associated with the AVV in SVP physiologies. Left and right ventricles were sutured onto patient-derived 3D-printed mounts and mounted into an ex vivo systemic heart simulator capable of reproducing Norwood, Glenn, Fontan and Late Fontan physiologies. We found that the tricuspid anterior leaflet experienced elevated maximum force, average force, and maximum yank compared to the posterior and septal leaflets. Between physiologies, maximum yank was greatest in the Norwood physiology relative to the Glenn, Fontan, and Late Fontan physiologies. These contrasting trends suggest that long- and short-term mechanics of AVV failure in single ventricle differ and that AVV interventions should account for asymmetries in force profiles between leaflets and physiologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AVV:

Atrioventricular valve

CO:

Cardiac output

HR:

Heart rate

MAP:

Mean arterial pressure

MV:

Mitral valve

SVP:

Single ventricle physiology

TV:

Tricuspid valve

References

  1. Bharucha, T., O. Honjo, N. Seller, et al. Mechanisms of tricuspid valve regurgitation in hypoplastic left heart syndrome: a case-matched echocardiographic-surgical comparison study. Eur. Heart J. Cardiovasc. Imaging. 14(2):135–141, 2013.

    Article  PubMed  Google Scholar 

  2. Cattermole, G. N., P. Y. M. Leung, G. Y. L. Ho, et al. The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiol Rep. 5(6):e13195, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dahou, A., D. Levin, M. Reisman, and R. T. Hahn. Anatomy and physiology of the tricuspid valve. JACC Cardiovasc. Imaging. 12(3):458–468, 2019.

    Article  PubMed  Google Scholar 

  4. Elmi, M., E. J. Hickey, W. G. Williams, G. Van Arsdell, C. A. Caldarone, and B. W. McCrindle. Long-term tricuspid valve function after Norwood operation. J. Thorac. Cardiovasc. Surg. 142(6):1341-1347.e4, 2011.

    Article  PubMed  Google Scholar 

  5. Fleming, S., M. Thompson, R. Stevens, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet. 377(9770):1011–1018, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fukuda, S., G. Saracino, Y. Matsumura, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114(SUPPL. 1).

  7. Honjo, O., C. R. Atlin, L. Mertens, et al. Atrioventricular valve repair in patients with functional single-ventricle physiology: impact of ventricular and valve function and morphology on survival and reintervention. J. Thorac. Cardiovasc. Surg. 142(2):326–35.e2, 2011.

    Article  PubMed  Google Scholar 

  8. Honjo, O., L. Mertens, and G. S. Van Arsdell. Atrioventricular valve repair in patients with single-ventricle physiology: mechanisms, techniques of repair, and clinical outcomes. Semin. Thorac. Cardiovasc. Surg. 14(1):75–84, 2011.

    Article  Google Scholar 

  9. Hosein, R. B. M., A. J. B. Clarke, S. P. McGuirk, et al. Factors influencing early and late outcome following the Fontan procedure in the current era. The “Two Commandments”? Eur. J. Cardio-thoracic. Surg. 31(3):344–353, 2007.

    Article  Google Scholar 

  10. Imai, Y., Y. Takanashi, S. Hoshino, et al. Modified Fontan procedure in ninety-nine cases of atrioventricular valve regurgitation. J. Thorac. Cardiovasc. Surg. 113(2):262–269, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Jett, S., D. Laurence, R. Kunkel, et al. An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. J. Mech. Behav. Biomed. Mater. 87:155–171, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jimenez, J. H., S. W. Liou, M. Padala, et al. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134(6):1562–1568, 2007.

    Article  PubMed  Google Scholar 

  13. Kenny, L. A., F. Derita, M. Nassar, J. Dark, L. Coats, and A. Hasan. Transplantation in the single ventricle population. Ann. Cardiothorac. Surg. 7(1):152–159, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. King, G., J. Ayer, D. Celermajer, et al. atrioventricular valve failure in Fontan palliation. J. Am. Coll. Cardiol. 73(7):810–822, 2019.

    Article  PubMed  Google Scholar 

  15. Kong, F., T. Pham, C. Martin, et al. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 46(8):1112–1127, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin, L. Q., S. Hatami, J. Y. Coe, et al. A novel right ventricular volume and pressure loaded piglet heart model for the study of tricuspid valve function. J. Vis. Exp. 2020(161):1–15, 2020.

    Google Scholar 

  17. Mathur, M., T. Jazwiec, W. D. Meador, et al. Tricuspid valve leaflet strains in the beating ovine heart. Biomech. Model Mechanobiol. 18(5):1351–1361, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mauger, C., K. Gilbert, A. M. Lee, et al. Right ventricular shape and function: Cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank. J. Cardiovasc. Magn. Reson. 21(1):41, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McGuirk, S. P., D. S. Winlaw, S. Langley, et al. The impact of ventricular morphology on midterm outcome following completion total cavopulmonary connection. Eur. J. Cardiothorac. Surg. 24(1):37–46, 2003.

    Article  PubMed  Google Scholar 

  20. Meador, W. D., M. Mathur, G. P. Sugerman, et al. A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets. Acta Biomater. 102:100–113, 2020.

    Article  CAS  PubMed  Google Scholar 

  21. Moon, J., L. Shen, D. S. Likosky, et al. Relationship of ventricular morphology and atrioventricular valve function to long-term outcomes following Fontan procedures. J. Am. Coll. Cardiol. 76(4):419–431, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ono, M., B. Mayr, M. Burri, et al. Tricuspid valve repair in children with hypoplastic left heart syndrome: impact of timing and mechanism on outcome. Eur. J. Cardio-Thorac. Surg. 57(6):1083–1090, 2020.

    Article  Google Scholar 

  23. Paulsen, M. J., J. H. Bae, A. M. Imbrie-Moore, et al. Development and ex vivo validation of novel force-sensing neochordae for measuring chordae tendineae tension in the mitral valve apparatus using optical fibers with embedded Bragg gratings. J. Biomech. Eng. 142(1):100, 2020.

    Article  Google Scholar 

  24. Paulsen, M. J., P. Kasinpila, A. M. Imbrie-Moore, et al. Modeling conduit choice for valve-sparing aortic root replacement on biomechanics with a 3-dimensional–printed heart simulator. J. Thorac. Cardiovasc. Surg. 158(2):392–403, 2019.

    Article  PubMed  Google Scholar 

  25. Ricci, M., P. Lombardi, A. Galindo, A. Vasquez, J. Zuccarelli, and E. Rosenkranz. Distribution of cardiac output and oxygen delivery in an acute animal model of single-ventricle physiology. J. Thorac. Cardiovasc. Surg. 130(4):1062–1070, 2005.

    Article  PubMed  Google Scholar 

  26. Rogers, L. S., A. C. Glatz, C. Ravishankar, et al. 18 years of the Fontan operation at a single institution: results from 771 consecutive patients. J. Am. Coll. Cardiol. 60(11):1018–1025, 2012.

    Article  PubMed  Google Scholar 

  27. Salgo, I. S., J. H. Gorman, R. C. Gorman, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 106(6):711–717, 2002.

    Article  PubMed  Google Scholar 

  28. Sielicka, A., E. L. Sarin, W. Shi, et al. Pathological remodeling of mitral valve leaflets from unphysiologic leaflet mechanics after undersized mitral annuloplasty to repair ischemic mitral regurgitation. J. Am. Heart Assoc. 7(21):e0009777, 2018.

    Article  Google Scholar 

  29. Spinner, E. M., D. Buice, C. Hwai Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40(5):996–1005, 2012.

    Article  PubMed  Google Scholar 

  30. Tseng, S. Y., S. Siddiqui, M. V. Di Maria, et al. Atrioventricular valve regurgitation in single ventricle heart disease: a common problem associated with progressive deterioration and mortality. J. Am. Heart Assoc.9(11):e015737, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tweddell, J. S., M. Nersesian, K. A. Mussatto, et al. Fontan palliation in the modern era: factors impacting mortality and morbidity. Ann. Thorac. Surg. 88(4):1291–1299, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (KL2TR003143) and the Stanford Maternal & Child Health Research Institute Pilot Grant Program. This work was also supported in part by the National Institutes of Health (NIH R01 HL089315-01, Y.J.W.). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation (ECCS-1542152).

Funding

Funding was provided by National Center for Advancing Translational Sciences (Grant Number KL2TR003143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Ma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Video 1. Tricuspid valve in the univentricular simulator during the Late Fontan physiology (800 ms/cycle). Supplementary file1 (MP4 71274 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moye, S.C., Kidambi, S., Lee, J.Y. et al. Ex Vivo Modeling of Atrioventricular Valve Mechanics in Single Ventricle Physiology. Ann Biomed Eng 51, 1738–1746 (2023). https://doi.org/10.1007/s10439-023-03178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03178-1

Keywords

Navigation