Skip to main content
Log in

Effects of Standing, Upright Seated, vs. Reclined Seated Postures on Astronaut Injury Biomechanics for Lunar Landings

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Astronauts may pilot a future lunar lander in a standing or upright/reclined seated posture. This study compared kinematics and injury risk for the upright/reclined (30°; 60°) seated vs. standing postures for lunar launch/landing using human body modeling across 30 simulations. While head metrics for standing and upright seated postures were comparable to 30 cm height jumps, those of reclined postures were closer to 60 cm height jumps. Head linear acceleration for 60° reclined posture in the 5 g/10 ms pulse exceeded NASA’s tolerance (10.1 g; tolerance: 10 g). Lower extremity metrics exceeding NASA’s tolerance in the standing posture (revised tibia index: 0.36–0.53; tolerance: 0.43) were lowered in seated postures (0.00–0.04). Head displacement was higher in standing vs. seated (9.0 cm vs. 2.4 cm forward, 7.0 cm vs. 1.3 cm backward, 2.1 cm vs. 1.2 cm upward, 7.3 cm vs. 0.8 cm downward, 2.4 cm vs. 3.2 cm lateral). Higher arm movement was seen with seated vs. standing (40 cm vs. 25 cm forward, 60 cm vs. 15 cm upward, 30 cm vs. 20 cm downward). Pulse-nature contributed more than 40% to the injury metrics for seated postures compared to 80% in the standing posture. Seat recline angle contributed about 22% to the injury metrics in the seated posture. This study established a computational methodology to simulate the different postures of an astronaut for lunar landings and generated baseline injury risk and body kinematics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

2 g/50 ms:

Half-sinusoidal pulse with 2 g (19.6 m/s2) peak acceleration and 50 ms rise time

2.7 g/150 ms:

Half-sinusoidal pulse with 2.7 g (26.5 m/s2) peak acceleration and 150 ms rise time

5 g/10 ms:

Half-sinusoidal pulse with 5 g (49 m/s2) peak acceleration and 10 ms rise time

AIS:

Abbreviated Injury Scale

Ant–Post:

Anterior–posterior

ATD:

Anthropomorphic Test Device

AUC:

Area under the acceleration pulse curve

BrIC:

Brain Injury Criterion

CG:

Center of gravity

CI:

Confidence interval

FE:

Finite element

GHBMC:

Global Human Body Models Consortium

HBM:

Human Body Model

HIC:

Head Injury Criterion

IARV:

Injury Assessment Reference Value

Jerk:

Peak acceleration/rise time

M50-PS:

GHBMC average-male simplified pedestrian model

NASA:

National Aeronautics and Space Administration

N ij :

Neck Injury Criterion

PMHS:

Post-Mortem Human Subject

RTI:

Revised tibia index

References

  1. Afshari, J., M. Haghpanahi, R. Kalantarinejad, and A. Rouboa. Biomechanical investigation of astronaut’s seat geometry to reduce neck and head injuries while landing impact. Int. J. Crashworth. 23:355–365, 2018

    Article  Google Scholar 

  2. Brinkley, J. W., and H. E. von Gierke. Impact accelerations. In: Foundations of Space Biology and Medicine. Vol 2, Part 3, Chapter 3. National Aeronautics and Space Administration, 1973

  3. Buhrman, J. R., H. Cheng, and S. R. Chaiken. Collaborative Biomechanics Data Network (CBDN): promoting human protection and performance in hazardous environments through modeling and data mining of human-centric data bases. Air Force Research Lab Wright-Patterson AFB, Human Effectiveness Directorate, OH, 2011

  4. Buhrman, J. R., G. C. Roush, E. M. Johnson, C. E. Perry, N. R. Bridges, S. E. Mosher, and R. A. Christopher. Effects of Variable Helmet Weight on Human Response to -Gx Impact. Oak Ridge, TN: Oakridge Institute for Science and Education, 2016

    Book  Google Scholar 

  5. Caldwell, E., M. Gernhardt, J. T. Somers, D. Younker, and N. Newby. Evidence Report: Risk of Injury Due to Dynamic Loads. Houston, TX: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 2012

    Google Scholar 

  6. Elemance LLC. Global human body models consortium user manual: simplified pedestrians versions 1.5.2, 1.6.2, 2.4.2 for LS-DYNA, 2019

  7. Elemance LLC. Global Human Body Models Consortium user manual: M50 and M95 simplified occupants version 2.3 for LS-DYNA, 2021

  8. Funk, J. R., J. M. Cormier, C. E. Bain, H. Guzman, E. Bonugli, and S. J. Manoogian. Head and neck loading in everyday and vigorous activities. Ann. Biomed. Eng. 39:766–776, 2011

    Article  PubMed  Google Scholar 

  9. Gaewsky, J. P., D. A. Jones, X. Ye, B. Koya, K. P. McNamara, F. S. Gayzik, A. A. Weaver, J. B. Putnam, J. T. Somers, and J. D. Stitzel. Modeling human volunteers in multidirectional, uni-axial sled tests using a finite element human body model. Ann. Biomed. Eng. 47:487–511, 2019

    Article  PubMed  Google Scholar 

  10. Gohmert, D. M. Seating considerations for spaceflight: the human to machine interface. 5th IAASS Conf. A Safer Sp. a Safer World (No. JSC-CN-24936), 2011

  11. Institute of Medicine. Review of NASA’s Evidence Reports on Human Health Risks: 2013 Letter Report. Washington, D.C.: National Academies Press, 2014. https://doi.org/10.17226/18575

    Book  Google Scholar 

  12. Jones, D. A., J. P. Gaewsky, M. Saffarzadeh, J. B. Putnam, A. A. Weaver, J. T. Somers, and J. D. Stitzel. Multidirection validation of a finite element 50th percentile male hybrid III anthropomorphic test device for spaceflight applications. J. Biomech. Eng. 2019. https://doi.org/10.1115/1.4041906

    Article  PubMed  Google Scholar 

  13. Lalwala, M., K. S. Devane, B. Koya, F.-C. Hsu, F. S. Gayzik, and A. A. Weaver. Sensitivity analysis for multidirectional spaceflight loading and muscle deconditioning on astronaut response. Ann. Biomed. Eng. 2022. https://doi.org/10.1007/s10439-022-03054-4

    Article  PubMed  Google Scholar 

  14. Lalwala, M., B. Koya, K. S. Devane, F.-C. Hsu, K. M. Yates, N. J. Newby, J. T. Somers, F. S. Gayzik, J. D. Stitzel, and A. A. Weaver. Simulated astronaut kinematics and injury risk for piloted lunar landings and launches while standing. Ann. Biomed. Eng. 2022. https://doi.org/10.1007/s10439-022-03002-2

    Article  PubMed  Google Scholar 

  15. Liu, B., H. Ma, and S. Jiang. Dynamic responses to landing impact at different key segments in selected body positions. Aerosp. Sci. Technol. 12:331–336, 2008

    Article  CAS  Google Scholar 

  16. McNamara, K. P., D. A. Jones, J. P. Gaewsky, J. B. Putnam, J. T. Somers, A. A. Weaver, and J. D. Stitzel. Validation of a finite element 50th percentile THOR anthropomorphic test device in multiple sled test configurations. Stapp Car Crash J. 62:415–442, 2018

    PubMed  Google Scholar 

  17. National Aeronautics and Space Administration. NASA technical standard NASA-STD-3001, Volume 2, Revision B, 2019

  18. National Aeronautics and Space Administration. HRR - Gap - OP-301. https://humanresearchroadmap.nasa.gov/gaps/gap.aspx?i=742, 2021

  19. Newby, N., J. T. Somers, E. E. Caldwell, C. Perry, J. Littell, and M. Gernhardt. Assessing biofidelity of the test device for human occupant restraint (THOR) against historic human volunteer data. Stapp Car Crash J. 57:469–505, 2013

    PubMed  Google Scholar 

  20. Pattarini, J. M., J. T. Somers, J. Charvat, D. Petersen, N. Newby, P. C. Greenhalgh, M. B. Stenger, and S. M. C. Lee. Artemis sustained translational acceleration limits: human tolerance evidence from Apollo to International Space Station. NASA Tech. Memo. NASA/TM-20205008196, 2020

  21. Perry, C., J. Buhrman, C. Pirnstill, and J. McIntire. ATD biodynamics during lateral impact for USAF neck injury criteria. Safety. 5:71, 2019

    Article  Google Scholar 

  22. Perry, C., C. Burneka, and C. Albery. Biodynamic assessment of the THOR-K Manikin. Air Force Research Lab Wright-Patterson AFB, Human Effectiveness Directorate, OH, 2013

  23. Putnam, J. B., J. T. Somers, J. A. Wells, C. E. Perry, and C. D. Untaroiu. Development and evaluation of a finite element model of the THOR for occupant protection of spaceflight crewmembers. Accid. Anal. Prev. 82:244–256, 2015

    Article  PubMed  Google Scholar 

  24. Rohlmann, A., D. Pohl, A. Bender, F. Graichen, J. Dymke, H. Schmidt, and G. Bergmann. Activities of everyday life with high spinal loads. PLoS One 9:e98510, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schwartz, D., B. Guleyupoglu, B. Koya, J. D. Stitzel, and F. S. Gayzik. Development of a computationally efficient full human body finite element model. Traffic Inj. Prev. 16:S49–S56, 2015

    Article  PubMed  Google Scholar 

  26. Somers, J. T., D. Gohmert, and J. W. Brinkley. Application of the Brinkley dynamic response criterion to spacecraft transient dynamic events. NASA Tech. Memo. NASA/TM-2013–217380-REV1, 2017

  27. Somers, J. T., T. Reiber, J. Pattarini, N. Newby, and P. Greenhalgh. Lunar transient accelerations white paper. NASA Tech. Memo. NASA/TM-20205008198, 2020

  28. Stapp, J. P. Human tolerance to deceleration. Am. J. Surg. 93:734–740, 1957

    Article  CAS  PubMed  Google Scholar 

  29. Stapp, J. P., and E. R. Taylor. Space cabin landing impact vector effects on human physiology. Aerosp. Med. 35:1117–1133, 1964

    CAS  PubMed  Google Scholar 

  30. Stubbs, T. J., R. R. Vondrak, and W. M. Farrell. Impact of dust on lunar exploration. ESA Work Dust Planet. Syst. 4075:239–243, 2007

    Google Scholar 

  31. Taylor, C. E., Y. Zhang, Y. Qiu, H. B. Henninger, K. B. Foreman, and K. N. Bachus. Estimated forces and moments experienced by osseointegrated endoprostheses for lower extremity amputees. Gait Posture. 80:49–55, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  32. Untaroiu, C. D., W. Pak, Y. Meng, J. Schap, B. Koya, and S. Gayzik. A finite element model of a midsize male for simulating pedestrian accidents. J. Biomech. Eng. 140:1–8, 2018

    Article  Google Scholar 

  33. Weis, E. B., N. P. Clarke, and J. W. Brinkley. Human response to several impact acceleration orientations and patterns. Aerosp. Med. 34:1122–1129, 1963

    PubMed  Google Scholar 

  34. Winkel, E. S., D. E. Toomey, and R. Taylor. Assessment of compressive thoracolumbar injury potential and influence of seat cushions on vertical impact loading of a seated occupant. SAE Int. J. Transp. Saf. 2015. https://doi.org/10.4271/2015-01-9151

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a NASA Human Research Program Student Augmentation Award to NASA Grant No. NNX16AP89G. The views expressed are those of the authors and do not represent the views of the GHBMC, NASA, or KBR. All simulations were run with the support of Cody Stevens and Adam Carlson.

Conflict of interest

Dr. Stitzel and Dr. Gayzik are members of Elemance, LLC, which provides academic and commercial licenses of the GHBMC-owned human body computer models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley A. Weaver.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3933 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalwala, M., Koya, B., Devane, K.S. et al. Effects of Standing, Upright Seated, vs. Reclined Seated Postures on Astronaut Injury Biomechanics for Lunar Landings. Ann Biomed Eng 51, 951–965 (2023). https://doi.org/10.1007/s10439-022-03108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03108-7

Keywords

Navigation