Skip to main content
Log in

Contractile Adaptation of the Left Ventricle Post-myocardial Infarction: Predictions by Rodent-Specific Computational Modeling

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) results in cardiac myocyte death and the formation of a fibrotic scar in the left ventricular free wall (LVFW). Following an acute MI, LVFW remodeling takes place consisting of several alterations in the structure and properties of cellular and extracellular components with a heterogeneous pattern across the LVFW. The normal function of the heart is strongly influenced by the passive and active biomechanical behavior of the LVFW, and progressive myocardial structural remodeling can have a detrimental effect on both diastolic and systolic functions of the LV leading to heart failure. Despite important advances in understanding LVFW passive remodeling in the setting of MI, heterogeneous remodeling in the LVFW active properties and its relationship to organ-level LV function remain understudied. To address these gaps, we developed high-fidelity finite-element (FE) rodent computational cardiac models (RCCMs) of MI using extensive datasets from MI rat hearts representing the heart remodeling from one-week (1-wk) to four-week (4-wk) post-MI timepoints. The rat-specific models (n = 2 for each timepoint) integrate detailed imaging data of the heart geometry, myocardial fiber architecture, and infarct zone determined using late gadolinium enhancement prior to terminal measurements. The computational models predicted a significantly higher level of active tension in remote myocardium in early post-MI hearts (1-wk post-MI) followed by a return to near the control level in late-stage MI (3- and 4-wk post-MI). The late-stage MI rats showed smaller myofiber ranges in the remote region and in-silico experiments using RCCMs suggested that the smaller fiber helicity is consistent with lower contractile forces needed to meet the measured ejection fractions in late-stage MI. In contrast, in-silico experiments predicted that collagen fiber transmural orientation in the infarct region has little influence on organ-level function. In addition, our MI RCCMs indicated that reduced and potentially positive circumferential strains in the infarct region at end-systole can be used to infer information about the time-varying properties of the infarct region. The detailed description of regional passive and active remodeling patterns can complement and enhance the traditional measures of LV anatomy and function that often lead to a gross and limited assessment of cardiac performance. The translation and implementation of our model in patient-specific organ-level simulations offer to advance the investigation of individualized prognosis and intervention for MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arunachalam, S. P., et al. Regional assessment of in vivo myocardial stiffness using 3D magnetic resonance elastography in a porcine model of myocardial infarction. Magn. Reson. Med. 79:361–369, 2018. https://doi.org/10.1002/mrm.26695.

    Article  CAS  PubMed  Google Scholar 

  2. Avazmohammadi, R., et al. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech. Modeling Mechanobiol. 17:31–53, 2018.

    Article  Google Scholar 

  3. Avazmohammadi, R., et al. A computational cardiac model for the adaptation to pulmonary arterial hypertension in the rat. Ann. Biomed. Eng. 47:138–153, 2019. https://doi.org/10.1007/s10439-018-02130-y.

    Article  PubMed  Google Scholar 

  4. Avazmohammadi, R., et al. A contemporary look at biomechanical models of myocardium. Annu. Rev. Biomed. Eng. 21:417–442, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avazmohammadi, R., et al. On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart. J. Biomech. 107:109767, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Avazmohammadi, R., M. R. Hill, M. A. Simon, W. Zhang, and M. S. Sacks. A novel constitutive model for passive right ventricular myocardium: evidence for myofiber–collagen fiber mechanical coupling. Biomech. Modeling Mechanobiol. 16:561–581, 2017.

    Article  Google Scholar 

  7. Bachner-Hinenzon, N., et al. Strain analysis in the detection of myocardial infarction at the acute and chronic stages. Echocardiography. 33:450–458, 2016. https://doi.org/10.1111/echo.13079.

    Article  PubMed  Google Scholar 

  8. Bovendeerd, P., T. Arts, J. Huyghe, D. van Campen, and R. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J. Biomech. 25:1129–1140, 1992. https://doi.org/10.1016/0021-9290(92)90069-D.

    Article  CAS  PubMed  Google Scholar 

  9. Chan, J., et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J. Am. Coll. Cardiol. 48:2026–2033, 2006. https://doi.org/10.1016/j.jacc.2006.07.050.

    Article  PubMed  Google Scholar 

  10. Chen, J., D. K. Ceholski, L. Liang, K. Fish, and R. J. Hajjar. Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice. Am. J. Physiol. Circ. Physiol. 313:H275–H282, 2017. https://doi.org/10.1152/ajpheart.00127.2017.

    Article  Google Scholar 

  11. Collier, P., D. Phelan, and A. Klein. A test in context: myocardial strain measured by speckle-tracking echocardiography. J. Am. Coll. Cardiol. 69:1043–1056, 2017. https://doi.org/10.1016/j.jacc.2016.12.012.

    Article  PubMed  Google Scholar 

  12. Dandel, M., H. Lehmkuhl, C. Knosalla, N. Suramelashvili, and R. Hetzer. Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Curr. Cardiol. Rev. 5:133–148, 2009. https://doi.org/10.2174/157340309788166642.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eriksson, T., A. Prassl, G. Plank, and G. Holzapfel. Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids. 18:592–606, 2013. https://doi.org/10.1177/1081286513485779.

    Article  Google Scholar 

  14. Espe, E. K., et al. Regional dysfunction after myocardial infarction in rats. Circ. Cardiovasc. Imaging. 10:e005997, 2017. https://doi.org/10.1161/CIRCIMAGING.116.005997.

    Article  PubMed  Google Scholar 

  15. Feild, B. J., R. O. Russell, J. T. Dowling, and C. E. Rackley. Regional left ventricular performance in the year following myocardial infarction. Circulation. 46:679–689, 1972. https://doi.org/10.1161/01.CIR.46.4.679.

    Article  CAS  PubMed  Google Scholar 

  16. Fomovsky, G., A. Rouillard, and J. Holmes. Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J. Mol. Cell. Cardiol. 52:1083–1090, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaasch, W. H., and M. R. Zile. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J. Am. Coll. Cardiol. 58:1733–1740, 2011. https://doi.org/10.1016/j.jacc.2011.07.022.

    Article  PubMed  Google Scholar 

  18. Gjesdal, O., et al. Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused st-elevation myocardial infarction. Circ. Cardiovasc. Imaging. 1:189–196, 2008. https://doi.org/10.1161/CIRCIMAGING.108.784900.

    Article  PubMed  Google Scholar 

  19. Glower, D., et al. Linearity of the frank-starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 71:994–1009, 1985.

    Article  CAS  PubMed  Google Scholar 

  20. Guccione, J. M., and A. D. McCulloch. Finite Element Modeling of Ventricular Mechanics. New York: Springer, 1991.

    Book  Google Scholar 

  21. Holmes, J. W., T. K. Borg, and J. W. Covell. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7:223–253, 2005. https://doi.org/10.1146/annurev.bioeng.7.060804.100453.

    Article  CAS  PubMed  Google Scholar 

  22. Holmes, J., J. Nuñez, and J. Covell. Functional implications of myocardial scar structure. Am. J. Physiol. Hear. Circ. Physiol. 272:H2123–H2130, 1997.

    Article  CAS  Google Scholar 

  23. Hung, C.-L., et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J. Am. Coll. Cardiol. 56:1812–1822, 2010. https://doi.org/10.1016/j.jacc.2010.06.044.

    Article  PubMed  Google Scholar 

  24. Hunter, P., A. McCulloch, and H. Ter Keurs. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69:289–331, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Keshavarzian, M. et al. An image registration framework to estimate 3d myocardial strains from cine cardiac mri in mice. In: International Conference on Functional Imaging and Modeling of the Heart, Springer, New York, 2021, pp. 273–284.

  26. Kupper, W., W. Bleifeld, P. Hanrath, D. Mathey, and S. Effert. Left ventricular hemodynamics and function in acute myocardial infarction: studies during the acute phase, convalescence and late recovery. Am. J. Cardiol. 40:900–905, 1977.

    Article  CAS  PubMed  Google Scholar 

  27. Lessick, J., et al. Regional three-dimensional geometry and function of left ventricles with fibrous aneurysms. A cine-computed tomography study. Circulation. 84:1072–1086, 1991. https://doi.org/10.1161/01.CIR.84.3.1072.

    Article  CAS  PubMed  Google Scholar 

  28. Li, D. S., et al. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3d kinematics. J. Mech. Behav. Biomed. Mater. 103:103508, 2020.

    Article  PubMed  Google Scholar 

  29. Li, D. S., et al. How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium. Acta Biomater. 114:296–306, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, H., et al. Distribution pattern of left-ventricular myocardial strain analyzed by a cine MRI based deformation registration algorithm in healthy chinese volunteers. Sci. Rep. 28:45314, 2017. https://doi.org/10.1038/srep45314.

    Article  CAS  Google Scholar 

  31. Liu, W. et al. Multiscale contrasts between the right and left ventricle biomechanics in healthy adult sheep and translational implications. Front. Bioeng. Biotechnol. 10, 2022.

  32. Liu, W., et al. Strain-dependent stress relaxation behavior of healthy right ventricular free wall. Acta Biomater. 152:290–299, 2022.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, H., et al. The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart. Sci. Rep. 11:1–15, 2021.

    Google Scholar 

  34. Mangion, K., et al. Circumferential strain predicts major adverse cardiovascular events following an acute ST-segment–elevation myocardial infarction. Radiology. 290:329–337, 2019. https://doi.org/10.1148/radiol.2018181253.

    Article  PubMed  Google Scholar 

  35. McGarvey, J. R., et al. Temporal changes in infarct material properties: an in-vivo assessment using magnetic resonance imaging and finite element simulations. Ann. Thorac. Surg. 100:582–589, 2015. https://doi.org/10.1016/j.athoracsur.2015.03.015.

    Article  PubMed  PubMed Central  Google Scholar 

  36. McKay, R. G., et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 74:693–702, 1986. https://doi.org/10.1161/01.CIR.74.4.693.

    Article  CAS  PubMed  Google Scholar 

  37. Mendiola, E., et al. Identification of infarct border zone using late gadolinium enhanced MRI in rats. FASEB J. 36:6220, 2022. https://doi.org/10.1096/fasebj.2022.36.S1.R6220.

    Article  Google Scholar 

  38. Mendiola, E. A., M. S. Sacks, and R. Avazmohammadi. Mechanical interaction of the pericardium and cardiac function in the normal and hypertensive rat heart. Front. Physiol. 838, 2022.

  39. Neelakantan, S., et al. Abstract 14303: structural remodeling in the left ventricular myocardium underlies systolic dysfunction in myocardial infarction. Circulation. 144:A14303–A14303, 2021. https://doi.org/10.1161/circ.144.suppl_1.14303.

    Article  Google Scholar 

  40. Neelakantan, S. et al. Stress relaxation behavior of left ventricular myocardium in mice. FASEB J. 36, 2022.

  41. Nicolosi, A. C., and H. M. Spotnitz. Quantitative analysis of regional systolic function with left ventricular aneurysm. Circulation. 78:856–862, 1988. https://doi.org/10.1161/01.CIR.78.4.856.

    Article  CAS  PubMed  Google Scholar 

  42. Omens, J. H., T. R. Miller, and J. W. Covell. Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovasc. Res. 33:351–358, 1997. https://doi.org/10.1016/S0008-6363(96)00206-4.

    Article  CAS  PubMed  Google Scholar 

  43. Pfeffer, M. A., and E. Braunwald. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 81:1161–1172, 1990. https://doi.org/10.1161/01.CIR.81.4.1161.

    Article  CAS  PubMed  Google Scholar 

  44. Reindl, M., et al. Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in st-elevation myocardial infarction. Circ. Cardiovasc. Imaging. 12:e009404, 2019. https://doi.org/10.1161/CIRCIMAGING.119.009404.

    Article  PubMed  Google Scholar 

  45. Richardson, W. J., S. A. Clarke, T. A. Quinn, and J. W. Holmes. Physiological implications of myocardial scar structure. Compr. Physiol. 5:1877–1909, 2018. https://doi.org/10.1002/cphy.c140067.

    Article  Google Scholar 

  46. Soepriatna, A. H., et al. Three-dimensional myocardial strain correlates with murine left ventricular remodelling severity post-infarction. J. R. Soc. Interface. 16:20190570, 2019. https://doi.org/10.1098/rsif.2019.0570.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sutton, M. G. S. J., and N. Sharpe. Left ventricular remodeling after myocardial infarction. Circulation. 101:2981–2988, 2000. https://doi.org/10.1161/01.CIR.101.25.2981.

    Article  CAS  PubMed  Google Scholar 

  48. Torres, W. M., et al. Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. Am. J. Physiol. Circ. Physiol. 315:H958–H967, 2018.

    Article  CAS  Google Scholar 

  49. van den Borne, S., et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7:30–37, 2009. https://doi.org/10.1038/nrcardio.2009.199.

    Article  PubMed  Google Scholar 

  50. Verma, A., et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the valiant (valsartan in acute myocardial infarction) echocardiographic study. Cardiovasc. Imaging. 1:582–591, 2008. https://doi.org/10.1016/j.jcmg.2008.05.012.

    Article  Google Scholar 

  51. Wenk, J. F., et al. A novel method for quantifying the in-vivo mechanical effect of material injected into a myocardial infarction. The Ann. Thorac. Surg. 92:935–941, 2011. https://doi.org/10.1016/j.athoracsur.2011.04.089.

    Article  PubMed  Google Scholar 

  52. Xi, J., et al. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17:133–146, 2013. https://doi.org/10.1016/j.media.2012.08.001.

    Article  PubMed  Google Scholar 

  53. Yingchoncharoen, T., S. Agarwal, Z. B. Popovic, and T. H. Marwick. Normal ranges of left ventricular strain: a meta-analysis. J. Am. Soc. Echocardiogr. 26:185–191, 2012. https://doi.org/10.1016/j.echo.2012.10.008.

    Article  PubMed  Google Scholar 

  54. Zimmerman, S. D., W. J. Karlon, J. W. Holmes, J. H. Omens, and J. W. Covell. Structural and mechanical factors influencing infarct scar collagen organization. Am. J. Physiol. Circ. Physiol. 278:H194–H200, 2000.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Institutes of Health Grant No. R00HL138288 to R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Avazmohammadi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 649 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendiola, E.A., Neelakantan, S., Xiang, Q. et al. Contractile Adaptation of the Left Ventricle Post-myocardial Infarction: Predictions by Rodent-Specific Computational Modeling. Ann Biomed Eng 51, 846–863 (2023). https://doi.org/10.1007/s10439-022-03102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03102-z

Keywords

Navigation