Skip to main content
Log in

Image Registration-Based Method for Reconstructing Transcatheter Heart Valve Geometry from Patient-Specific CT Scans

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Accurate reconstruction of transcatheter aortic valve (TAV) geometries and other stented cardiac devices from computed tomography (CT) images is challenging, mainly associated with blooming artifacts caused by the metallic stents. In addition, bioprosthetic leaflets of TAVs are difficult to segment due to the low signal strengths of the tissues. This paper describes a method that exploits the known device geometry and uses an image registration-based reconstruction method to accurately recover the in vivo stent and leaflet geometries from patient-specific CT images. Error analyses have shown that the geometric error of the stent reconstruction is around 0.1mm, lower than 1/3 of the stent width or most of the CT scan resolutions. Moreover, the method only requires a few human inputs and is robust to input biases. The geometry and the residual stress of the leaflets can be subsequently computed using finite element analysis (FEA) with displacement boundary conditions derived from the registration. Finally, the stress distribution in self-expandable stents can be reasonably estimated by an FEA-based simulation. This method can be used in pre-surgical planning for TAV-in-TAV procedures or for in vivo assessment of surgical outcomes from post-procedural CT scans. It can also be used to reconstruct other medical devices such as coronary stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bernardi, F. L. M., D. Dvir, J. Rodes-Cabau, and H. B. Ribeiro. Valve-in-valve challenges: how to avoid coronary obstruction. Front. Cardiovasc. Med. 6:120, 2019.

    Article  Google Scholar 

  2. Bianchi, M., G. Marom, R. P. Ghosh, O. M. Rotman, P. Parikh, L. Gruberg, and D. Bluestein. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model Mechanobiol. 18:435–451, 2019.

    Article  Google Scholar 

  3. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: experimental results. J. Biomech. Eng. 122:23–30, 2000.

    Article  CAS  Google Scholar 

  4. Blackman, D. J., S. Saraf, P. A. MacCarthy, A. Myat, S. G. Anderson, C. J. Malkin, M. S. Cunnington, K. Somers, P. Brennan, G. Manoharan, J. Parker, O. Aldalati, S. J. Brecker, C. Dowling, S. P. Hoole, S. Dorman, M. Mullen, S. Kennon, M. Jerrum, P. Chandrala, D. H. Roberts, J. Tay, S. N. Doshi, P. F. Ludman, T. A. Fairbairn, J. Crowe, R. D. Levy, A. P. Banning, N. Ruparelia, M. S. Spence, and D. Hildick-Smith. Long-term durability of transcatheter aortic valve prostheses. J. Am. Coll. Cardiol. 73:537–545, 2019.

    Article  Google Scholar 

  5. Bosmans, B., N. Famaey, E. Verhoelst, J. Bosmans, and J. Vander Sloten. A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation. J. Biomech. 49:2824–2830, 2016.

    Article  Google Scholar 

  6. Brennan, J. M., F. H. Edwards, Y. Zhao, S. O’Brien, M. E. Booth, R. S. Dokholyan, P. S. Douglas, E. D. Peterson, D. E. A. R. Team. Long-term safety and effectiveness of mechanical versus biologic aortic valve prostheses in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. Circulation. 127:1647–1655, 2013.

    Article  Google Scholar 

  7. Brown, J. M., S. M. O’Brien, C. Wu, J. A. Sikora, B. P. Griffith, and J. S. Gammie. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 137:82–90, 2009.

    Article  Google Scholar 

  8. Duncan, A., S. Davies, C. Di Mario, and N. Moat. Valve-in-valve transcatheter aortic valve implantation for failing surgical aortic stentless bioprosthetic valves: a single-center experience. J. Thorac. Cardiovasc. Surg. 150:91–98, 2015.

    Article  Google Scholar 

  9. Dvir, D., J. G. Webb, S. Bleiziffer, M. Pasic, R. Waksman, S. Kodali, M. Barbanti, A. Latib, U. Schaefer, J. Rodes-Cabau, H. Treede, N. Piazza, D. Hildick-Smith, D. Himbert, T. Walther, C. Hengstenberg, H. Nissen, R. Bekeredjian, P. Presbitero, E. Ferrari, A. Segev, A. de Weger, S. Windecker, N. E. Moat, M. Napodano, M. Wilbring, A. G. Cerillo, S. Brecker, D. Tchetche, T. Lefevre, F. De Marco, C. Fiorina, A. S. Petronio, R. C. Teles, L. Testa, J. C. Laborde, M. B. Leon, R. Kornowski, I. Valve-in-Valve International Data Registry. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA. 312:162–170, 2014.

    Article  CAS  Google Scholar 

  10. Ebersberger, U., F. Tricarico, U. J. Schoepf, P. Blanke, J. R. Spears, G. W. Rowe, W. T. Halligan, T. Henzler, F. Bamberg, A. W. Leber, E. Hoffmann, and P. Apfaltrer. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur. Radiol. 23:125–132, 2013.

    Article  Google Scholar 

  11. Eggebrecht, H., U. Schafer, H. Treede, P. Boekstegers, J. Babin-Ebell, M. Ferrari, H. Mollmann, H. Baumgartner, T. Carrel, P. Kahlert, P. Lange, T. Walther, R. Erbel, R. H. Mehta, and M. Thielmann. Valve-in-valve transcatheter aortic valve implantation for degenerated bioprosthetic heart valves. JACC Cardiovasc. Interv. 4:1218–1227, 2011.

    Article  Google Scholar 

  12. El Faquir, N., O. De Backer, J. Bosmans, T. Rudolph, N. Buzzatti, G. Bieliauskas, V. Collas, H. Wienemann, D. Schiavi, P. Cummins, Z. Rahhab, H. Kroon, Q. Wolff, M. Lenzen, J. M. Ribeiro, A. Latib, M. Adam, L. Sondergaard, B. Ren, N. Van Mieghem, and P. de Jaegere. Patient-specific computer simulation in TAVR with the self-expanding evolut R valve. JACC Cardiovasc. Interv. 13:1803–1812, 2020.

    Article  Google Scholar 

  13. Gessat, M., R. Hopf, T. Pollok, C. Russ, T. Frauenfelder, S. H. Sundermann, S. Hirsch, E. Mazza, G. Szekely, and V. Falk. Image-based mechanical analysis of stent deformation: concept and exemplary implementation for aortic valve stents. IEEE Trans. Biomed. Eng. 61:4–15, 2014.

    Article  Google Scholar 

  14. Glower, D. D., K. P. Landolfo, S. Cheruvu, Y.-Y. Cen, J. K. Harrison, T. M. Bashore, P. K. Smith, R. H. Jones, W. G. Wolfe, and J. E. Lowe. Determinants of 15-year outcome with 1,119 standard Carpentier-Edwards porcine valves. Ann. Thorac. Surg. 66:S44–S48, 1998.

    Article  CAS  Google Scholar 

  15. Heitkemper, M., H. Hatoum, A. Azimian, B. Yeats, J. Dollery, B. Whitson, G. Rushing, J. Crestanello, S. M. Lilly, and L. P. Dasi. Modeling risk of coronary obstruction during transcatheter aortic valve replacement. J. Thorac. Cardiovasc. Surg. 159:829–838, 2020.

    Article  Google Scholar 

  16. Hopf R., M. Gessat, C. Russ, S. H. Sündermann, V. Falk, and E. Mazza. Finite element stent modeling for the postoperative analysis of transcatheter aortic valve implantation. J. Med. Devices 11, 2017.

  17. Hopf, R., S. H. Sundermann, S. Born, C. E. Ruiz, N. M. Van Mieghem, P. P. de Jaegere, F. Maisano, V. Falk, and E. Mazza. Postoperative analysis of the mechanical interaction between stent and host tissue in patients after transcatheter aortic valve implantation. J. Biomech. 53:15–21, 2017.

    Article  Google Scholar 

  18. Huang, H. D., and M. Mansour. Pacemaker implantation after transcatheter aortic valve replacement: a necessary evil perhaps but are we making progress? J. Am. Heart Assoc. 9:e016700, 2020.

    Article  Google Scholar 

  19. Ionescu, M., R. W. Metcalfe, D. Cody, M. V. Alvarado, J. Hipp, and G. Benndorf. Spatial resolution limits of multislice computed tomography (MS-CT), C-arm-CT, and flat panel-CT (FP-CT) compared to MicroCT for visualization of a small metallic stent. Acad. Radiol. 18:866–875, 2011.

    Article  Google Scholar 

  20. Maes, F., A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging. 16:187–198, 1997.

    Article  CAS  Google Scholar 

  21. Maes, F., D. Vandermeulen, and P. Suetens. Medical image registration using mutual information. Proc. IEEE. 91:1699–1722, 2003.

    Article  Google Scholar 

  22. Mattes, D., D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging. 22:120–128, 2003.

    Article  Google Scholar 

  23. McCormick, M., X. Liu, J. Jomier, C. Marion, and L. Ibanez. ITK: enabling reproducible research and open science. Front. Neuroinform. 8:13, 2014.

    Article  Google Scholar 

  24. Plitman Mayo, R., H. Yaakobovich, A. Finkelstein, S. C. Shadden, and G. Marom. Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation. R. Soc. Open Sci. 7:201838, 2020.

    Article  Google Scholar 

  25. Plitman Mayo, R., H. Yaakobovich, A. Finkelstein, S. C. Shadden, and G. Marom. Impact of BASILICA on the thrombogenicity potential of valve-in-valve implantations. J. Biomech. 118:110309, 2021.

    Article  Google Scholar 

  26. Reul, R. M., M. K. Ramchandani, and M. J. Reardon. Transcatheter aortic valve-in-valve procedure in patients with bioprosthetic structural valve deterioration. Methodist Debakey Cardiovasc. J. 13:132–141, 2017.

    Article  Google Scholar 

  27. Rueckert, D., L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging. 18:712–721, 1999.

    Article  CAS  Google Scholar 

  28. Schultz, C., R. Rodriguez-Olivares, J. Bosmans, T. Lefevre, G. De Santis, N. Bruining, V. Collas, T. Dezutter, B. Bosmans, Z. Rahhab, N. El Faquir, Y. Watanabe, P. Segers, B. Verhegghe, B. Chevalier, N. van Mieghem, M. De Beule, P. Mortier, and P. de Jaegere. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. EuroIntervention. 11:1044–1052, 2016.

    Article  Google Scholar 

  29. Sigovan, M., S. Si-Mohamed, D. Bar-Ness, J. Mitchell, J. B. Langlois, P. Coulon, E. Roessl, I. Blevis, M. Rokni, G. Rioufol, P. Douek, and L. Boussel. Feasibility of improving vascular imaging in the presence of metallic stents using spectral photon counting CT and K-edge imaging. Sci. Rep. 9:19850, 2019.

    Article  CAS  Google Scholar 

  30. Szeliski, R., and J. Coughlan. Spline-based image registration. Int. J. Comput. Vis. 22:199–218, 1997.

    Article  Google Scholar 

  31. Tzamtzis, S., J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125–130, 2013.

    Article  CAS  Google Scholar 

  32. Vahidkhah, K., and A. N. Azadani. Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets. J. Biomech. 58:114–122, 2017.

    Article  Google Scholar 

  33. Webb, J. G., M. J. Mack, J. M. White, D. Dvir, P. Blanke, H. C. Herrmann, J. Leipsic, S. K. Kodali, R. Makkar, D. C. Miller, P. Pibarot, A. Pichard, L. F. Satler, L. Svensson, M. C. Alu, R. M. Suri, and M. B. Leon. Transcatheter aortic valve implantation within degenerated aortic surgical bioprostheses: PARTNER 2 valve-in-valve registry. J. Am. Coll. Cardiol. 69:2253–2262, 2017.

    Article  Google Scholar 

  34. Wolf, F., S. Leschka, C. Loewe, P. Homolka, C. Plank, R. Schernthaner, D. Bercaczy, R. Goetti, J. Lammer, G. Friedrich, B. Marincek, H. Alkadhi, and G. Feuchtner. Coronary artery stent imaging with 128-slice dual-source CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode. Eur. Radiol. 20:2084–2091, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Ethics declarations

Conflict of interest

Dr. Dasi reports having patent applications filed on novel polymeric valves, vortex generators and superhydrophobic/omniphobic surfaces. Dr. Dasi, Dr. Chen, Dr. Samaee, Dr. Thourani, Dr. Esmailie, Dr. Razavi and Breandan Yeats have patents pending on predictive computational modeling. Dr. Thourani has research or consulting with Abbott Vascular, Boston Scientific, Cryolife, Edwards Lifesciences, Medtronic, and Shockwave and is a stockholder of DasiSimulations LLC. Dr. Dasi is a co-founder and stockholder of DasiSimulations LLC and YoungHeartValve Inc. No other conflicts were reported.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yeats, B., Swamy, K. et al. Image Registration-Based Method for Reconstructing Transcatheter Heart Valve Geometry from Patient-Specific CT Scans. Ann Biomed Eng 50, 805–815 (2022). https://doi.org/10.1007/s10439-022-02962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02962-9

Keywords

Navigation