Skip to main content

Advertisement

Log in

Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gastric motility is governed in part by bioelectrical ‘slow waves’, and high-resolution electrical mapping has emerged as a clinical research tool with diagnostic potential. In this study, we aimed to determine the effects of electrode diameter and contact material on in vivo extracellular slow wave recordings to inform gastric mapping device design. Custom flexible-printed-circuit electrode arrays were designed with four electrode diameters (0.3, 1.8, 3.3, 4.8 mm; 4 × 8 array) and fabricated in four contact materials (gold, silver, copper, silver-chloride). The electrode arrays were placed on the gastric serosa in vivo in pigs and unipolar slow wave signals were simultaneously recorded from each electrode. Propagation, signal morphology, and noise were quantified to determine which electrodes produced signals with the highest signal-to-noise ratio (SNR) and gradient, which is a preferred metric for detection and analytical algorithms. Electrodes of diameters 0.3 and 1.8 mm recorded significantly higher signal gradients than 3.3 and 4.8 mm (p < 0.05). Silver-chloride electrodes recorded a significantly higher gradient than all other materials (p < 0.05), with no significant differences between gold, silver, and copper electrodes. Electrodes of diameters 1.8 and 3.3 mm recorded significantly higher SNR than 0.3 mm (p < 0.05). Electrodes with a diameter of 1.8 mm provided an optimal combination to maximize the signal gradient and SNR, and silver-chloride electrodes yielded the highest signal gradient. These results can now inform gastric mapping device design, particularly minimally-invasive devices where electrode size is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abraham, A. C., L. K. Cheng, T. R. Angeli, S. Alighaleh, and N. Paskaranandavadivel. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping. Neurogastroenterol. Motil. 31:e13670, 2019.

    Google Scholar 

  2. Alighaleh, S., L. K. Cheng, T. R. Angeli, M. Amiri, S. Sathar, G. O’Grady, and N. Paskaranandavadivel. A novel gastric pacing device to modulate slow waves and assessment by high-resolution mapping. IEEE Trans. Biomed. Eng. 2019. https://doi.org/10.1109/tbme.2019.2896624.

    Article  PubMed  Google Scholar 

  3. Alvarez, W. C. The electrogastrogram and what it shows. J. Am. Med. Assoc. 78:1116–1119, 1922.

    Article  Google Scholar 

  4. Alvarez, W. C., and L. J. Mahoney. Action currents in stomach and intestine. Am. J. Physiol. 58:476–493, 1922.

    Article  CAS  Google Scholar 

  5. Angeli, T. R., P. Du, N. Paskaranandavadivel, P. W. M. Janssen, A. Beyder, R. G. Lentle, I. P. Bissett, L. K. Cheng, and G. O’Grady. The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J. Physiol. 591:4567–4579, 2013.

    Article  CAS  Google Scholar 

  6. Angeli, T. R., G. O’Grady, N. Paskaranandavadivel, J. C. Erickson, P. Du, A. J. Pullan, I. P. Bissett, and L. K. Cheng. Experimental and automated analysis techniques for high-resolution electrical mapping of small intestine slow wave activity. J. Neurogastroenterol. Motil. 19:179–191, 2013.

    Article  Google Scholar 

  7. Angeli, T. R., L. K. Cheng, P. Du, T. H.-H. Wang, C. E. Bernard, M.-G. Vannucchi, M. S. Faussone-Pellegrini, C. Lahr, R. Vather, J. A. Windsor, G. Farrugia, T. L. Abell, and G. O’Grady. Loss of interstitial cells of Cajal and patterns of gastric dysrhythmia in patients with chronic unexplained nausea and vomiting. Gastroenterology 149:56–66.e5, 2015.

    Article  Google Scholar 

  8. Angeli, T. R., P. Du, N. Paskaranandavadivel, A. Hall, S. J. Asirvatham, G. Farrugia, J. A. Windsor, L. K. Cheng, and G. O’Grady. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface. Neurogastroenterol. Motil. 29:e13010, 2017.

    Article  Google Scholar 

  9. Angeli, T. R., G. O’Grady, R. Vather, I. P. Bissett, and L. K. Cheng. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: feasibility and initial results. Neurogastroenterol. Motil. 2018. https://doi.org/10.1111/nmo.13310.

    Article  PubMed  Google Scholar 

  10. Babb, T. L., and W. Kupfer. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp. Neurol. 86:171–182, 1984.

    Article  CAS  Google Scholar 

  11. Berry, R., N. Paskaranandavadivel, P. Du, M. L. Trew, G. O’Grady, J. A. Windsor, and L. K. Cheng. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surg. Endosc. 31:477–486, 2016.

    Article  Google Scholar 

  12. Berry, R., L. K. Cheng, P. Du, N. Paskaranandavadivel, T. R. Angeli, T. Mayne, G. Beban, and G. O’Grady. Patterns of abnormal gastric pacemaking after sleeve gastrectomy defined by laparoscopic high-resolution electrical mapping. Obes. Surg. 27:1929–1937, 2017.

    Article  Google Scholar 

  13. Bihar, E., T. Roberts, E. Ismailova, M. Saadaoui, M. Isik, A. Sanchez-Sanchez, D. Mecerreyes, T. Hervé, J. B. De Graaf, and G. G. Malliaras. Fully printed electrodes on stretchable textiles for long-term electrophysiology. Adv. Mater. Tech. 2:2–6, 2017.

    Article  Google Scholar 

  14. Bozler, E. The action potentials of the stomach. Am. J. Physiol. 144:693–700, 1945.

    Article  Google Scholar 

  15. Code, C. F., and J. A. Marlett. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J. Physiol. 246:289–309, 1975.

    Article  CAS  Google Scholar 

  16. Du, P., G. O’Grady, J. U. Egbuji, W. J. E. P. Lammers, D. Budgett, P. Nielsen, J. A. Windsor, A. J. Pullan, and L. K. Cheng. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37:839–846, 2009.

    Article  Google Scholar 

  17. Du, P., A. Hameed, T. R. Angeli, C. Lahr, T. L. Abell, L. K. Cheng, and G. O’Grady. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol. Motil. 27:1409–1422, 2015.

    Article  CAS  Google Scholar 

  18. Du, P., N. Paskaranandavadivel, T. R. Angeli, L. K. Cheng, and G. O’Grady. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. WIREs Syst. Biol. Med. 8:69–85, 2016.

    Article  Google Scholar 

  19. Du, P., S. Calder, T. R. Angeli, S. Sathar, N. Paskaranandavadivel, G. O’Grady, and L. K. Cheng. Progress in mathematical modeling of gastrointestinal slow wave abnormalities. Front. Physiol. 8:1136, 2018.

    Article  Google Scholar 

  20. Egbuji, J. U., G. O’Grady, P. Du, L. K. Cheng, W. J. E. P. Lammers, J. A. Windsor, and A. J. Pullan. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol. Motil. 22:e292–e300, 2010.

    Article  CAS  Google Scholar 

  21. Erickson, J. C., G. O’Grady, P. Du, C. Obioha, W. Qiao, W. O. Richards, L. A. Bradshaw, A. J. Pullan, and L. K. Cheng. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings. Ann. Biomed. Eng. 38:1511–1529, 2010.

    Article  Google Scholar 

  22. Hammad, F. T., B. Stephen, L. Lubbad, J. F. B. Morrison, and W. J. Lammers. Macroscopic electrical propagation in the guinea pig urinary bladder. Am. J. Physiol. Ren. Physiol. 307:F172–F182, 2014.

    Article  CAS  Google Scholar 

  23. Hinder, R. A., and K. A. Kelly. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am. J. Surg. 133:29–33, 1977.

    Article  CAS  Google Scholar 

  24. Huizinga, J. D., and W. J. E. P. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1–G8, 2009.

    Article  CAS  Google Scholar 

  25. Lammers, W. J. E. P., A. Al-Kais, S. Singh, K. Arafat, and T. Y. El-Sharkawy. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J. Appl. Phys. 74:1454–1461, 1993.

    CAS  Google Scholar 

  26. Lammers, W. J. E. P., L. Ver Donck, J. A. J. Schuurkes, and B. Stephen. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can. J. Physiol. Pharmacol. 83:1031–1043, 2005.

    Article  CAS  Google Scholar 

  27. Lammers, W. J. E. P., L. Ver Donck, B. Stephen, D. Smets, and J. A. J. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.

    Article  Google Scholar 

  28. Lammers, W. J. E. P., L. Ver Donck, B. Stephen, D. Smets, and J. A. J. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1200–G1210, 2009.

    Article  CAS  Google Scholar 

  29. Lammers, W. J. E. P., B. Stephen, M. A. Al-Sultan, S. B. Subramanya, and A. M. Blanks. The location of pacemakers in the uteri of pregnant guinea pigs and rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R1439–R1446, 2015.

    Article  CAS  Google Scholar 

  30. McAdams, E. Bioelectrodes. In: Encyclopedia of Medical Devices and Instrumentation, edited by J. G. Webster. New York: Wiley, 2006, pp. 120–166.

    Google Scholar 

  31. O’Grady, G., N. Paskaranandavadivel, T. R. Angeli, P. Du, J. A. Windsor, L. K. Cheng, and A. J. Pullan. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiol. Meas. 32:N13–N22, 2011.

    Article  Google Scholar 

  32. O’Grady, G., T. R. Angeli, P. Du, C. Lahr, W. J. E. P. Lammers, J. A. Windsor, T. L. Abell, G. Farrugia, A. J. Pullan, and L. K. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(589–598):e1–e3, 2012.

    Google Scholar 

  33. O’Grady, G., T. R. Angeli, N. Paskaranandavadivel, J. C. Erickson, C. Wells, A. A. Gharibans, L. K. Cheng, and P. Du. Methods for high-resolution electrical mapping in the gastrointestinal tract. IEEE Rev. Biomed. Eng. 12:287–302, 2019.

    Article  Google Scholar 

  34. Paskaranandavadivel, N., L. K. Cheng, P. Du, G. O’Grady, and A. J. Pullan. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1:1737–1740, 2011.

    Google Scholar 

  35. Paskaranandavadivel, N., G. O’Grady, P. Du, A. J. Pullan, and L. K. Cheng. An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE. Trans. Biomed. Eng. 59:882–889, 2012.

    Article  Google Scholar 

  36. Paskaranandavadivel, N., G. O’Grady, P. Du, and L. K. Cheng. Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol. Motil. 25:79–83, 2013.

    Article  Google Scholar 

  37. Paskaranandavadivel, N., X. Pan, P. Du, G. O’Grady, and L. K. Cheng. Detection of the recovery phase of in vivo gastric slow wave recordings. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1:6094–6097, 2015.

    Google Scholar 

  38. Putney, J., G. O’Grady, T. R. Angeli, N. Paskaranandavadivel, L. K. Cheng, J. C. Erickson, and P. Du. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1448–1451:2015, 2015.

    Google Scholar 

  39. Spach, M. S., R. C. Barr, J. W. Havstad, and E. C. Long. Skin-electrode impedance and its effect on recording cardiac potentials. Circulation 34:649–656, 1966.

    Article  CAS  Google Scholar 

  40. Stinnett-Donnelly, J. M., N. Thompson, N. Habel, V. Petrov-Kondratov, D. D. Correa De Sa, J. H. T. Bates, and P. S. Spector. Effects of electrode size and spacing on the resolution of intracardiac electrograms. Coron. Artery Dis. 23:126–132, 2012.

    Article  Google Scholar 

  41. Vosgueritchian, M., D. J. Lipomi, and Z. Bao. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22:421–428, 2012.

    Article  CAS  Google Scholar 

  42. Yassi, R., G. O’Grady, N. Paskaranandavadivel, P. Du, T. R. Angeli, A. J. Pullan, L. K. Cheng, and J. C. Erickson. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 12:60, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Peng Du and Mrs Linley Nisbet for their expert assistance with this study.

Funding

This project and/or authors were supported by research grants from the Kelliher Charitable Trust, the Auckland Medical Research Foundation, the New Zealand Health Research Council (HRC), the MedTech Centre of Research Excellence New Zealand, and the Riddet Institute Centre of Research Excellence New Zealand. TRA was supported by the Edith C. Coan Postdoctoral Fellowship from the Auckland Medical Research Foundation and Rutherford Discovery Fellowship from the Royal Society of New Zealand.

Disclosure

LKC, NP, and TRA hold intellectual property in the field of gastrointestinal electrophysiology and are shareholders in FlexiMap Ltd. AAK and SA declare no conflicts of interest. No commercial financial support was provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Angeli.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamat, A.A., Paskaranandavadivel, N., Alighaleh, S. et al. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings. Ann Biomed Eng 48, 1407–1418 (2020). https://doi.org/10.1007/s10439-020-02457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02457-5

Keywords

Navigation