Skip to main content
Log in

Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization

  • S.I. : Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hydrogel materials have become a versatile platform for in vitro cell culture due to their ability to simulate many aspects of native tissues. However, precise spatiotemporal presentation of peptides and other biomolecules has remained challenging. Here we report the use of light-sensing proteins (LSPs), more commonly used in optogenetics research, as light-activated reversible binding sites within synthetic poly(ethylene glycol) (PEG) hydrogels. We used LOVTRAP, a two component LSP system consisting of LOV2, a protein domain that can cycle reversibly between “light” and “dark” conformations in response to blue light, and a z-affibody, Zdark (Zdk), that binds the dark state of LOV2, to spatiotemporally control the presentation of a recombinant protein within PEG hydrogels. By immobilizing LOV2 within PEG gels, we were able to capture a recombinant fluorescent protein (used as a model biomolecule) containing a Zdk domain, and then release the Zdk fusion protein using blue light. Zdk was removed from LOV2-containing PEG gels using focused blue light, resulting in a 30% reduction of fluorescence compared to unexposed regions of the gel. Additionally, the reversible binding capability of LOVTRAP was observed in our system, enabling our LOV2 gels to capture and release Zdk at least three times. By adding a Zdk domain to a recombinant peptide or protein, dynamic, spatially constrained displays of non-diffusing ligands within a PEG gel could feasibly be achieved using LOV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ai, H. W., J. N. Henderson, S. J. Remington, and R. E. Campbell. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400:531–540, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alcantar, N. A., E. S. Aydil, and J. N. Israelachvili. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 51:343–351, 2000.

    CAS  PubMed  Google Scholar 

  3. Beamish, J. A., J. M. Zhu, K. Kottke-Marchant, and R. E. Marchant. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. J. Biomed. Mater. Res. A 92a:441–450, 2010.

    CAS  Google Scholar 

  4. Bellucci, J. J., M. Amiram, J. Bhattacharyya, D. McCafferty, and A. Chilkoti. Three-in-one chromatography-free purification, tag removal, and site-specific modification of recombinant fusion proteins using sortase A and elastin-like polypeptides. Angew. Chem. Int. Ed. Engl. 52:3703–3708, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Beyer, H. M., O. S. Thomas, N. Riegel, M. D. Zurbriggen, W. Weber, and M. Horner. Generic and reversible opto-trapping of biomolecules. Acta Biomater. 79:276–282, 2018.

    CAS  PubMed  Google Scholar 

  6. Boyden, E. S., F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–1268, 2005.

    CAS  PubMed  Google Scholar 

  7. Dagliyan, O., M. Tarnawski, P. H. Chu, D. Shirvanyants, I. Schlichting, N. V. Dokholyan, and K. M. Hahn. Engineering extrinsic disorder to control protein activity in living cells. Science 354:1441–1444, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson, D. G., G. A. Benders, C. Andrews-Pfannkoch, E. A. Denisova, H. Baden-Tillson, J. Zaveri, T. B. Stockwell, A. Brownley, D. W. Thomas, M. A. Algire, C. Merryman, L. Young, V. N. Noskov, J. I. Glass, J. C. Venter, C. A. Hutchison, 3rd, and H. O. Smith. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220, 2008.

    CAS  PubMed  Google Scholar 

  9. Guigas, G., C. Kalla, and M. Weiss. Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J . 93:316–323, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hahn, K. M., and B. Kuhlman. Hold me tightly LOV. Nat. Methods 7:595–597, 2010.

    CAS  PubMed  Google Scholar 

  11. Hahn, M. S., M. K. McHale, E. Wang, R. H. Schmedlen, and J. L. West. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35:190–200, 2007.

    PubMed  Google Scholar 

  12. Hahn, M. S., J. S. Miller, and J. L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.

    CAS  Google Scholar 

  13. Hammer, J. A., A. Ruta, A. M. Therien, and J. L. West. Cell compatible, site-specific covalent modification of hydrogel scaffolds enables user-defined control over cell-material interactions. Biomacromolecules 20:2486, 2019.

    CAS  PubMed  Google Scholar 

  14. Hammer, J. A., and J. L. West. Dynamic ligand presentation in biomaterials. Bioconjug. Chem. 29:2140–2149, 2018.

    CAS  PubMed  Google Scholar 

  15. Hayashi-Takagi, A., S. Yagishita, M. Nakamura, F. Shirai, Y. I. Wu, A. L. Loshbaugh, B. Kuhlman, K. M. Hahn, and H. Kasai. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Homans, R. J., R. U. Khan, M. B. Andrews, A. E. Kjeldsen, L. S. Natrajan, S. Marsden, E. A. McKenzie, J. M. Christie, and A. R. Jones. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Phys. Chem. Chem. Phys. 20:16949–16955, 2018.

    CAS  PubMed  Google Scholar 

  17. Leung, D. W., C. Otomo, J. Chory, and M. K. Rosen. Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proc. Natl. Acad. Sci. USA 105:12797–12802, 2008.

    CAS  PubMed  Google Scholar 

  18. Levskaya, A., O. D. Weiner, W. A. Lim, and C. A. Voigt. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461:997–1001, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X., D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102:17816–17821, 2005.

    CAS  PubMed  Google Scholar 

  20. Liu, L. M., J. A. Shadish, C. K. Arakawa, K. Shi, J. Davis, and C. A. DeForest. Cyclic stiffness modulation of cell-laden protein-polymer hydrogels in response to user-specified stimuli including light. Adv. Biosyst. 2:1800240, 2018.

    Google Scholar 

  21. Lyu, S. S., J. Fang, T. Y. Duan, L. L. Fu, J. Q. Liu, and H. B. Li. Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem. Commun. (Camb.) 53:13375–13378, 2017.

    CAS  Google Scholar 

  22. McMurtrey, R. J. Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. Tissue Eng. C Methods 22:221–249, 2016.

    CAS  Google Scholar 

  23. Motta-Mena, L. B., A. Reade, M. J. Mallory, S. Glantz, O. D. Weiner, K. W. Lynch, and K. H. Gardner. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10:196–202, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagel, G., M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15:2279–2284, 2005.

    CAS  PubMed  Google Scholar 

  25. Nemir, S., H. N. Hayenga, and J. L. West. PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105:636–644, 2010.

    CAS  PubMed  Google Scholar 

  26. Patel, P. N., A. S. Gobin, J. L. West, and C. W. Patrick, Jr. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng. 11:1498–1505, 2005.

    CAS  PubMed  Google Scholar 

  27. Polstein, L. R., and C. A. Gersbach. Light-inducible gene regulation with engineered zinc finger proteins. Methods Mol. Biol. 1148:89–107, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Polstein, L. R., and C. A. Gersbach. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11:198–200, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Polstein, L. R., M. Juhas, G. Hanna, N. Bursac, and C. A. Gersbach. An engineered optogenetic switch for spatiotemporal control of gene expression, cell differentiation, and tissue morphogenesis. ACS Synth. Biol. 6:2003–2013, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Salomon, M., J. M. Christie, E. Knieb, U. Lempert, and W. R. Briggs. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410, 2000.

    CAS  PubMed  Google Scholar 

  31. Schweller, R. M., and J. L. West. Encoding hydrogel mechanics via network cross-linking structure. ACS Biomater. Sci. Eng. 1:335–344, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shaner, N. C., R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, and R. Y. Tsien. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:1567–1572, 2004.

    CAS  PubMed  Google Scholar 

  33. Shimizu-Sato, S., E. Huq, J. M. Tepperman, and P. H. Quail. A light-switchable gene promoter system. Nat. Biotechnol. 20:1041–1044, 2002.

    CAS  PubMed  Google Scholar 

  34. Swartz, T. E., S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi, W. R. Briggs, and R. A. Bogomolni. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276:36493–36500, 2001.

    CAS  PubMed  Google Scholar 

  35. Theile, C. S., M. D. Witte, A. E. Blom, L. Kundrat, H. L. Ploegh, and C. P. Guimaraes. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8:1800–1807, 2013.

    PubMed  PubMed Central  Google Scholar 

  36. Tischer, D., and O. D. Weiner. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15:551–558, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, H., M. Vilela, A. Winkler, M. Tarnawski, I. Schlichting, H. Yumerefendi, B. Kuhlman, R. Liu, G. Danuser, and K. M. Hahn. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13:755–758, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, R., Z. Yang, J. Luo, I. M. Hsing, and F. Sun. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl. Acad. Sci. USA 114:5912–5917, 2017.

    CAS  PubMed  Google Scholar 

  39. Weber, L. M., C. G. Lopez, and K. S. Anseth. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J. Biomed. Mater. Res. A 90:720–729, 2009.

    PubMed  PubMed Central  Google Scholar 

  40. Wu, Y. I., D. Frey, O. I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman, and K. M. Hahn. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–U111, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wylie, R. G., and M. S. Shoichet. Two-photon micropatterning of amines within an agarose hydrogel. J. Mater. Chem. 18:2716–2721, 2008.

    CAS  Google Scholar 

  42. Yoo, S. K., Q. Deng, P. J. Cavnar, Y. I. Wu, K. M. Hahn, and A. Huttenlocher. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev. Cell 18:226–236, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zayner, J. P., and T. R. Sosnick. Factors that control the chemistry of the LOV domain photocycle. PLoS ONE 9:e087074, 2014.

    Google Scholar 

  44. Zeskind, B. J., C. D. Jordan, W. Timp, L. Trapani, G. Waller, V. Horodincu, D. J. Ehrlich, and P. Matsudaira. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nat. Methods 4:567–569, 2007.

    CAS  PubMed  Google Scholar 

  45. Zhou, X. X., H. K. Chung, A. J. Lam, and M. Z. Lin. Optical control of protein activity by fluorescent protein domains. Science 338:810–814, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the generosity of Dr. Charles Gersbach for providing the blue LED array used in this study and Dr. Ashutosh Chilkoti for providing the sortase-ELP construct used to conjugate LOV2 to PEG. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant Number DGE1644868.

Conflict of interest

The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West.

Additional information

Associate Editor Erin Lavik oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, J.A., Ruta, A. & West, J.L. Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization. Ann Biomed Eng 48, 1885–1894 (2020). https://doi.org/10.1007/s10439-019-02407-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02407-w

Keywords

Navigation