Skip to main content

Advertisement

Log in

High Frequency Spectral Ultrasound Imaging to Detect Metastasis in Implanted Biomaterial Scaffolds

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

For most cancers, metastasis is the point at which disease is no longer curable. Earlier detection of metastasis, when it is undetectable by current clinical methods, may enable better outcomes. We have developed a biomaterial implant that recruits metastatic cancer cells in mouse models of breast cancer. Here, we investigate spectral ultrasound imaging (SUSI) as a non-invasive strategy for detecting metastasis to the implanted biomaterial scaffolds. Our results show that SUSI, which detects parameters related to tissue composition and structure, identified changes at an early time point when tumor cells were recruited to scaffolds in orthotopic breast cancer mouse models. These changes were not associated with acellular components in the scaffolds but were reflected in the cellular composition in the scaffold microenvironment, including an increase in CD31 + CD45-endothelial cell number in tumor bearing mice. In addition, we built a classification model based on changes in SUSI parameters from scaffold measurements to stratify tumor free and tumor bearing status. Combination of a linear discriminant analysis and bagged decision trees model resulted in an area under the curve of 0.92 for receiver operating characteristics analysis. With the potential for early non-invasive detection, SUSI could facilitate clinical translation of the scaffolds for monitoring metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aguado, B. A., G. G. Bushnell, S. S. Rao, J. S. Jeruss, and L. D. Shea. Engineering the pre-metastatic niche. Nat. Biomed. Eng. 1:0077, 2017.

    Article  CAS  Google Scholar 

  2. Aguado, B. A., J. R. Caffe, D. Nanavati, S. S. Rao, G. G. Bushnell, S. M. Azarin, and L. D. Shea. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomater. 33:13–24, 2016.

    Article  CAS  Google Scholar 

  3. Aguado, B. A., R. M. Hartfield, G. G. Bushnell, J. T. Decker, S. M. Azarin, D. Nanavati, M. J. Schipma, S. S. Rao, R. S. Oakes, and Y. Zhang. A synthetic pre-metastatic niche mimic alters the primary tumor and tumor microenvironment. Adv. Healthc. Mater. 7:1700903, 2018.

    Article  Google Scholar 

  4. Aguado, B. A., J. J. Wu, S. M. Azarin, D. Nanavati, S. S. Rao, G. G. Bushnell, C. B. Medicherla, and L. D. Shea. Secretome identification of immune cell factors mediating metastatic cell homing. Scientific Reports 5:17566, 2015.

    Article  CAS  Google Scholar 

  5. Aguado, B. A., J. J. Wu, S. M. Azarin, D. Nanavati, S. S. Rao, G. G. Bushnell, C. B. Medicherla, and L. D. Shea. Secretome identification of immune cell factors mediating metastatic cell homing. Sci. Rep. 5:17566, 2015.

    Article  CAS  Google Scholar 

  6. Alix-Panabières, C., and K. Pantel. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6:479–491, 2016.

    Article  Google Scholar 

  7. Azarin, S. M., J. Yi, R. M. Gower, B. A. Aguado, M. E. Sullivan, A. G. Goodman, E. J. Jiang, S. S. Rao, Y. Ren, and S. L. Tucker. In vivo capture and label-free detection of early metastatic cells. Nat. Commun. 6:8094, 2015.

    Article  Google Scholar 

  8. Bersani, F., J. Lee, M. Yu, R. Morris, R. Desai, S. Ramaswamy, M. Toner, D. A. Haber, and B. Parekkadan. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res. 74(24):7229–7238, 2014.

    Article  CAS  Google Scholar 

  9. Bianchi, M. T., A. J. K. Phillips, W. Wang, and E. B. Klerman. Statistics for sleep and biological rhythms research: from distributions and displays to correlation and causation. J. Biol. Rhythms 32:7–17, 2017.

    Article  Google Scholar 

  10. Bushnell, G. G., T. P. Hardas, R. M. Hartfield, Y. Zhang, R. S. Oakes, S. Ronquist, H. Chen, I. Rajapakse, M. S. Wicha, J. S. Jeruss, and L. D. Shea. Biomaterial scaffolds recruit an aggressive population of metastatic tumor cells in vivo. Cancer Res. Canres 2502:2018, 2019.

    Google Scholar 

  11. Chaffer, C. L., and R. A. Weinberg. A perspective on cancer cell metastasis. Science 331:1559–1564, 2011.

    Article  CAS  Google Scholar 

  12. de la Fuente, A., L. Alonso-Alconada, C. Costa, J. Cueva, T. Garcia-Caballero, R. Lopez-Lopez, and M. Abal. M-trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J. Natl. Cancer Inst. 2015. https://doi.org/10.1093/jnci/djv184.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Erdi, Y. E. Limits of tumor detectability in nuclear medicine and PET. Mol. Imaging Radionucl. Ther. 21:23, 2012.

    Article  Google Scholar 

  14. Erler, J. T., K. L. Bennewith, T. R. Cox, G. Lang, D. Bird, A. Koong, Q.-T. Le, and A. J. Giaccia. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44, 2009.

    Article  CAS  Google Scholar 

  15. Feleppa, E. J., A. Kalisz, J. B. Sokil-Melgar, F. L. Lizzi, T. Liu, A. L. Rosado, M. C. Shao, W. R. Fair, Y. Wang, and M. S. Cookson. Typing of prostate tissue by ultrasonic spectrum analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43:609–619, 1996.

    Article  Google Scholar 

  16. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J. Natl. Cancer Inst. 45:773–782, 1970.

    CAS  PubMed  Google Scholar 

  17. Gudur, M., R. R. Rao, Y.-S. Hsiao, A. W. Peterson, C. X. Deng, and J. P. Stegemann. Noninvasive, quantitative, spatiotemporal characterization of mineralization in three-dimensional collagen hydrogels using high-resolution spectral ultrasound imaging. Tissue Eng. C 18:935–946, 2012.

    Article  CAS  Google Scholar 

  18. Gudur, M. S. R., R. R. Rao, A. W. Peterson, D. J. Caldwell, J. P. Stegemann, and C. X. Deng. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging. PLoS ONE 9:e85749, 2014.

    Article  Google Scholar 

  19. Hiratsuka, S., A. Watanabe, Y. Sakurai, S. Akashi-Takamura, S. Ishibashi, K. Miyake, M. Shibuya, S. Akira, H. Aburatani, and Y. Maru. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10:1349, 2008.

    Article  CAS  Google Scholar 

  20. Hong, X., J. P. Stegemann, and C. X. Deng. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography. Biomaterials 88:12–24, 2016.

    Article  CAS  Google Scholar 

  21. Kaplan, R. N., R. D. Riba, S. Zacharoulis, A. H. Bramley, L. Vincent, C. Costa, D. D. MacDonald, D. K. Jin, K. Shido, and S. A. Kerns. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827, 2005.

    Article  CAS  Google Scholar 

  22. Ko, C.-Y., L. Wu, A. M. Nair, Y.-T. Tsai, V. K. Lin, and L. Tang. The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 33:876–885, 2012.

    Article  CAS  Google Scholar 

  23. Kumon, R. E., M. J. Pollack, A. L. Faulx, K. Olowe, F. T. Farooq, V. K. Chen, Y. Zhou, R. C. Wong, G. A. Isenberg, and M. V. Sivak. In vivo characterization of pancreatic and lymph node tissue by using EUS spectrum analysis: a validation study. Gastrointest. Endosc. 71:53–63, 2010.

    Article  Google Scholar 

  24. Lee, J., M. Li, J. Milwid, J. Dunham, C. Vinegoni, R. Gorbatov, Y. Iwamoto, F. Wang, K. Shen, and K. Hatfield. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc. Natl. Acad. Sci. USA 109:19638–19643, 2012.

    Article  CAS  Google Scholar 

  25. Lizzi, F. L., M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko. Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34:319–329, 1987.

    Article  CAS  Google Scholar 

  26. Nair, A., B. D. Kuban, N. Obuchowski, and D. G. Vince. Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound Med. Biol. 27:1319–1331, 2001.

    Article  CAS  Google Scholar 

  27. Nakagawa, S., and I. C. Cuthill. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82(4):591–605, 2007.

    Article  Google Scholar 

  28. Peinado, H., S. Lavotshkin, and D. Lyden. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21(2):139–146, 2011.

    Article  CAS  Google Scholar 

  29. Peinado, H., H. Zhang, I. R. Matei, B. Costa-Silva, A. Hoshino, G. Rodrigues, B. Psaila, R. N. Kaplan, J. F. Bromberg, and Y. Kang. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17:302, 2017.

    Article  CAS  Google Scholar 

  30. Rao, S. S., G. G. Bushnell, S. M. Azarin, G. Spicer, B. A. Aguado, J. R. Stoehr, E. J. Jiang, V. Backman, L. D. Shea, and J. S. Jeruss. Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Can. Res. 76:5209–5218, 2016.

    Article  CAS  Google Scholar 

  31. Røraas, T., P. H. Petersen, and S. Sandberg. Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals. Clin. Chem. 58:1306–1313, 2012.

    Article  Google Scholar 

  32. Stathopoulou, A., I. Vlachonikolis, D. Mavroudis, M. Perraki, C. Kouroussis, S. Apostolaki, N. Malamos, S. Kakolyris, A. Kotsakis, and N. Xenidis. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J. Clin. Oncol. 20:3404–3412, 2002.

    Article  CAS  Google Scholar 

  33. Stukel, J. M., M. Goss, H. Zhou, W. Zhou, R. K. Willits, and A. A. Exner. Development of a high-throughput ultrasound technique for the analysis of tissue engineering constructs. Ann. Biomed. Eng. 44:793–802, 2016.

    Article  Google Scholar 

  34. Yi, J., and V. Backman. Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography. Opt. Lett. 37:4443–4445, 2012.

    Article  Google Scholar 

  35. Yi, J., A. J. Radosevich, J. D. Rogers, S. C. Norris, İ. R. Çapoğlu, A. Taflove, and V. Backman. Can OCT be sensitive to nanoscale structural alterations in biological tissue? Opt. Express 21:9043–9059, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the NIH for their support through 5R01CA173745-06 and R01DE026630. G.G.B. is a recipient of the NSF Graduate Research Fellowship and NRSA F31 CA224982-01. G.G.B., X.H., S.S.R., J.S.J., C.X.D., and L.D.S. conceived the presented hypotheses and experimental designs. G.G.B and X.H. carried out experiments with support from S.S.R, R.M.H, Y.Z., and R.S.O, and completed computational analysis with support from R.S.O. G.G.B., X.H., and L.D.S. wrote the manuscript with support from J.S.J. and C.X.D. L.D.S. supervised the project with support from J.S.J. and C.X.D. All authors discussed the results and reviewed the final manuscript.

Data Availability

Data associated with this manuscript is available through a private repository with password “Bushnell-Hong” at the following link https://1drv.ms/u/s!AmVnzTmi4yrLhI1lf215PCMrJzK7WA?e=S4xYlg. After publication data will be made publicly available.

Grant Support

The authors acknowledge support from the National Institutes of Health NIH-Director’s Transformative Research Award-R01CA173745 and R01CA214384 (to L.D. Shea and J.S. Jeruss) and NIH R01DE026630 (to C. X. Deng and J. P. Stegemann). G.G. Bushnell is a recipient of the NSF Graduate Research Fellowship and NRSA F31 CA224982-01.

Conflict of interest

The scaffold as a platform for metastasis detection is described in a current patent application US20170281798A1 by assignee Northwestern University with inventors Lonnie D. Shea, Samira M. Azarin, Robert M. Gower, Jacqueline S. Jeruss and US2017012556 by assignee Regents of the University of Michigan with inventors Lonnie D. Shea, Shreyas S. Rao, Samira M. Azarin, Jacqueline S. Jeruss, and Grace G. Bushnell.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheri X. Deng or Lonnie D. Shea.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushnell, G.G., Hong, X., Hartfield, R.M. et al. High Frequency Spectral Ultrasound Imaging to Detect Metastasis in Implanted Biomaterial Scaffolds. Ann Biomed Eng 48, 477–489 (2020). https://doi.org/10.1007/s10439-019-02366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02366-2

Keywords

Navigation