Skip to main content

Advertisement

Log in

Biomechanical Testing of Additive Manufactured Proximal Humerus Fracture Fixation Plates

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Achieving satisfactory fracture fixation in osteoporotic patients with unstable proximal humerus fractures remains a major clinical challenge. Varus collapse is one of the more prominent complications that may lead to screw cutout. This aim of this study was to compare the fixation provided by conventional locking plates with novel design concepts that are only feasible through additive manufacturing (AM) techniques. In addition to reversed engineered implants, two novel implant designs with integrated struts were included in the study to provide medial support to humeral head. The medial strut was either solid or included a porous lattice structure intended to promote bone ingrowth. Biomechanical tests were performed using low density synthetic bones with simulated 3-part comminuted fractures. Nondestructive torsion and compression were performed, followed by increasing cyclic loading. The relative displacements between the bone fragments were determined using a 3D motion capture system. The AM manufactured implants with medial strut showed significant reduction of varus displacement during the increasing cyclic loading when compared to conventional designs. AM reversed-engineered locking plates showed similar mechanical behavior to conventional plates with identical geometry. This study demonstrates the feasibility and potential of employing alternative design via AM for fixation of unstable comminuted proximal humerus fractures to reduce fragment displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arabnejad, S., B. Johnston, M. Tanzer, and D. Pasini. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 35(8):1774–1783, 2017.

    CAS  PubMed  Google Scholar 

  2. Bae, J.-H., J.-K. Oh, C.-S. Chon, C.-W. Oh, J.-H. Hwang, and Y.-C. Yoon. The biomechanical performance of locking plate fixation with intramedullary fibular strut graft augmentation in the treatment of unstable fractures of the proximal humerus. Bone Joint J. 93B(7):937–941, 2011.

    Google Scholar 

  3. Bäumler, M. Welche nicht-klinischen Faktoren beeinflussen den Einsatz innovativer Implantate? Das Beispiel medikamentenfreisetzender Koronarstents bei Patienten mit akutem Myokardinfarkt: eine Mehrebenen-Regressionsanalyse. Das Gesundheitswes. 75(12):822–831, 2013.

    Google Scholar 

  4. Bergmann, G., F. Graichen, A. Bender, M. Kääb, A. Rohlmann, and P. Westerhoff. In vivo glenohumeral contact forces-Measurements in the first patient 7 months postoperatively. J. Biomech. 40(10):2139–2149, 2007.

    CAS  PubMed  Google Scholar 

  5. Bergmann, G., F. Graichen, A. Bender, et al. In vivo gleno-humeral joint loads during forward flexion and abduction. J. Biomech. 44(8):1543–1552, 2011.

    CAS  PubMed  Google Scholar 

  6. Berner, A., M. A. Woodruff, C. X. F. Lam, M. T. Arafat, S. Saifzadeh, and R. Steck. Effects of scaffold architecture on cranial bone healing. Int. J. Oral Maxillofac. Surg. 43(4):506–513, 2014.

    CAS  PubMed  Google Scholar 

  7. Boileau, P., S. G. Krishnan, L. Tinsi, G. Walch, J. S. Coste, and D. Molé. Tuberosity malposition and migration: reasons for poor outcomes after hemiarthroplasty for displaced fractures of the proximal humerus. J Shoulder Elb Surg. 11(5):401–412, 2002.

    CAS  Google Scholar 

  8. Cappellaro, G., S. Ghislandi, and E. Anessi-Pessina. Diffusion of medical technology: the role of financing. Health Policy (New York) 100(1):51–59, 2011.

    Google Scholar 

  9. Choi, S., H. Kang, and H. Bang. Technical tips: dualplate fixation technique for comminuted proximal humerus fractures §. Injury 45(8):1280–1282, 2014.

    PubMed  Google Scholar 

  10. Clavert, P., P. Adam, and A. Bevort. Pitfalls and complications with locking plate for proximal humerus fracture. J Shoulder Elb Surg. 19(4):489–494, 2010.

    Google Scholar 

  11. Croitoru, A. S. M., B. A. Pacioga, and C. S. Comsa. Personalized hip implants manufacturing and testing. Appl. Surf. Sci. 417:256–261, 2017.

    CAS  Google Scholar 

  12. Cronskär, M., L.-E. Rännar, M. Bäckström, K. G. Nilsson, and B. Samuelsson. Patient-specific clavicle reconstruction using digital design and additive manufacturing. J. Mech. Des. 137:111418, 2015.

    Google Scholar 

  13. Di Prima, M., J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman, and L. Ricles. Additively manufactured medical products the FDA perspective. 3D Print Med 2(1):1, 2016.

    PubMed  PubMed Central  Google Scholar 

  14. Edwards, S., and N. Wilson. Two-Part surgical neck fractures of the proximal part of the humerus. J Bone Jt Surg Ser A. 88:2258–2264, 2006.

    Google Scholar 

  15. Egol, K. A., C. C. Ong, M. Walsh, L. M. Jazrawi, N. C. Tejwani, and J. D. Zuckerman. Early complications in proximal humerus fractures (OTA types 11) treated with locked plates. J. Orthop. Trauma 22(3):159–164, 2008.

    PubMed  Google Scholar 

  16. Fankhauser, F., C. Boldin, G. Schippinger, C. Haunschmid, and R. Szyszkowitz. A new locking plate for unstable fractures of the proximal humerus. Clin. Orthop. Relat. Res. 430:176–181, 2005.

    Google Scholar 

  17. Frosch, K., F. Barvencik, V. Viereck, et al. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res A 68(2):325–334, 2003.

    Google Scholar 

  18. Gallinet, D., A. Adam, N. Gasse, S. Rochet, and L. Obert. Improvement in shoulder rotation in complex shoulder fractures treated by reverse shoulder arthroplasty. J Shoulder Elb Surg. 22(1):38–44, 2013.

    Google Scholar 

  19. Gardner, M. J., M. H. Griffith, D. Demetrakopoulos, R. H. Brophy, A. Grose, D. L. Helfet, and D. G. M. Lorich. Hybrid locked plating of osteoporotic fractures of the humerus. J Bone Jt Surg Ser A. 88(9):1962–1967, 2006.

    Google Scholar 

  20. Gardner, M. J., Y. Weil, J. U. Barker, B. T. Kelly, D. L. Helfet, and D. G. Lorich. The importance of medial support in locked plating of proximal humerus fractures. J. Orthop. Trauma 21:185–191, 2007.

    PubMed  Google Scholar 

  21. Goodchild, L., L. Chuang, C. Hewitt, D. Torgerson, and P. Trial. Surgical vs nonsurgical treatment of adults with displaced fractures of the proximal humerus the PROFHER randomized clinical trial. JAMA 313:1037–1047, 2015.

    PubMed  Google Scholar 

  22. Grubhofer, F., K. Wieser, D. C. Meyer, et al. Reverse total shoulder arthroplasty for acute head-splitting, 3- and 4-part fractures of the proximal humerus in the elderly. J Shoulder Elb Surg. 25(10):1690–1698, 2016.

    Google Scholar 

  23. Heo, S., S. E. Szczesny, D. H. Kim, K. S. Saleh, and R. L. Mauck. Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. J. Orthop. Res. 36:808–815, 2017.

    PubMed  PubMed Central  Google Scholar 

  24. Hitzler, L., J. Hirsch, B. Heine, M. Merkel, W. Hall, and A. Öchsner. On the anisotropic mechanical properties of selective laser-melted stainless steel. Materials (Basel). 10(10):1136, 2017.

    PubMed Central  Google Scholar 

  25. Hsu, J. E., A. O. Gee, R. M. Lucas, J. S. Somerson, W. J. Warme, and F. A. Matsen. Management of intraoperative posterior decentering in shoulder arthroplasty using anteriorly eccentric humeral head components. J Shoulder Elb Surg. 25(12):1980–1988, 2016.

    Google Scholar 

  26. Inzana, J. A., P. Varga, and M. Windolf. Implicit modeling of screw threads for ef fi cient fi nite element analysis of complex bone-implant systems. J. Biomech. 49(9):1836–1844, 2016.

    PubMed  Google Scholar 

  27. Jardini, A. L., M. A. Larosa, R. M. Filho, et al. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillofacial Surg. 42(8):1877–1884, 2014.

    Google Scholar 

  28. Kamath, C., B. El-Dasher, G. F. Gallegos, W. E. King, and A. Sisto. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int. J. Adv. Manuf. Technol. 74(1–4):65–78, 2014.

    Google Scholar 

  29. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491, 2005.

    CAS  PubMed  Google Scholar 

  30. Kassapidou, M., V. Franke Stenport, L. Hjalmarsson, and C. B. Johansson. Cobalt–chromium alloys in fixed prosthodontics in Sweden. Acta Biomater Odontol Scand. 3(1):53–62, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Katthagen, J. C., M. Schwarze, L. Bauer, J. Meyer-kobbe, and C. Voigt. Is there any advantage in placing an additional calcar screw in locked nailing of proximal humeral fractures? Orthop Traumatol Surg Res. 101(4):431–435, 2015.

    CAS  PubMed  Google Scholar 

  32. Katthagen, J. C., M. Schwarze, J. Meyer-Kobbe, C. Voigt, C. Hurschler, and H. Lill. Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures. Clin. Biomech. 29(7):735–741, 2014.

    Google Scholar 

  33. Katthagen, J. C., M. Schwarze, M. Warnhoff, C. Voigt, C. Hurschler, and H. Lill. Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures. Injury 47(3):617–624, 2016.

    PubMed  Google Scholar 

  34. Kiet, T. K., B. T. Feeley, M. Naimark, et al. Outcomes after shoulder replacement: comparison between reverse and anatomic total shoulder arthroplasty. J Shoulder Elb Surg. 24(2):179–185, 2015.

    Google Scholar 

  35. Kim, S. H., B. L. Wise, Y. Zhang, and R. M. Szabo. Increasing incidence of shoulder arthroplasty in the United States. J Bone Jt Surgery-American 93(24):2249–2254, 2011.

    Google Scholar 

  36. Kim, D. S., Y. S. Yoon, S. K. Kang, and H. B. Jin. The outcomes of proximal humerus fractures with medial metaphyseal disruption treated with fibular allograft augmentation and locking plate. Clin Shoulder Elb. 20(2):90–94, 2017.

    Google Scholar 

  37. Kok, Y., X. P. Tan, P. Wang, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater. Des. 139:565–586, 2018.

    CAS  Google Scholar 

  38. Kristiansen, B., and S. W. Christensen. Plate fixation of proximal humeral fractures. Acta Orthop. Scand. 57(4):320–323, 1986.

    CAS  PubMed  Google Scholar 

  39. Lescheid, J., R. Zdero, S. Shah, P. R. T. Kuzyk, and E. H. Schemitsch. The biomechanics of locked plating for repairing proximal humerus fractures with or without medial cortical support. J. Trauma 69(5):1235–1242, 2010.

    PubMed  Google Scholar 

  40. Li, B., and R. M. Aspden. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J. Bone Miner. Res. 12(4):641–651, 1997.

    CAS  PubMed  Google Scholar 

  41. Lill, H., P. Hepp, J. Korner, et al. Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch. Orthop. Trauma Surg. 123(2–3):74–81, 2003.

    CAS  PubMed  Google Scholar 

  42. Liska, W. D., D. J. Marcellin-Little, E. V. Eskelinen, C. G. Sidebotham, O. L. A. Harrysson, and A. K. Hielm-Björkman. Custom total knee replacement in a dog with femoral condylar bone loss. Vet. Surg. 36(4):293–301, 2007.

    PubMed  Google Scholar 

  43. Lowther, M., S. Louth, A. Davey, et al. Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants. Addit Manuf. 28(June):565–584, 2019.

    CAS  Google Scholar 

  44. Mathison, C., R. Chaudhary, L. Beaupre, M. Reynolds, S. Adeeb, and M. Bouliane. Biomechanical analysis of proximal humeral fixation using locking plate fixation with an intramedullary fibular allograft. Clin. Biomech. 25(7):642–646, 2010.

    Google Scholar 

  45. Mazzoni, S., A. Bianchi, G. Schiariti, G. Badiali, and C. Marchetti. Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning. J. Oral Maxillofac. Surg. 73(4):701–707, 2015.

    PubMed  Google Scholar 

  46. Mehta, S., M. Chin, J. Sanville, S. Namdari, and M. W. Hast. Calcar screw position in proximal humerus fracture fixation: don’t miss high!. Injury 49(3):624–629, 2018.

    PubMed  Google Scholar 

  47. Nolan, B. M., E. Ankerson, and J. M. Wiater. Reverse total shoulder arthroplasty improves function in cuff tear arthropathy. Clin. Orthop. Relat. Res. 469(9):2476–2482, 2011.

    PubMed  Google Scholar 

  48. O’Neill, F., F. Condon, T. McGloughlin, B. Lenehan, C. Coffey, and M. Walsh. Validity of synthetic bone as a substitute for osteoporotic cadaveric femoral heads in mechanical testing: a biomechanical study. Bone Joint Res. 1(4):50–55, 2012.

    PubMed  PubMed Central  Google Scholar 

  49. Papadonikolakis, A., M. B. Neradilek, and F. A. Matsen. Failure of the glenoid component in anatomic total shoulder arthroplasty. J Bone Jt Surgery Am 95(24):2205–2212, 2013.

    Google Scholar 

  50. Patel, P. S. D., D. E. T. Shepherd, and D. W. L. Hukins. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskelet Disord 9:137, 2008.

    PubMed  PubMed Central  Google Scholar 

  51. Ponce, B. A., K. J. Thompson, P. Raghava, et al. The role of medial comminution and calcar fractures treated with locking plates. J Bone Jt Surg. 113:1–7, 2013.

    Google Scholar 

  52. Saltzman, B. M., B. J. Erickson, J. D. Harris, A. K. Gupta, M. Mighell, and A. A. Romeo. Fibular strut graft augmentation for open reduction and internal fixation of proximal humerus fractures a systematic review and the authors’ preferred surgical technique. Orthop J Sports Med 4(7):1–9, 2016.

    Google Scholar 

  53. Sawbones Worldwide. Test materials and composite bones: Biomechanical Product Catalog. Vashan, WA

  54. Schumaier, A., and B. Grawe. Proximal humerus fractures: evaluation and management in the elderly patient. Geriatr Orthop Surg Rehabil 9:1–11, 2018.

    Google Scholar 

  55. Scott, J., N. Gupta, C. Weber, and S. Newsome. Additive manufacturing: status and opportunities. Science and Technology. 89:3651–3660, 2012.

    Google Scholar 

  56. Shidid, D., M. Leary, P. Choong, and M. Brandt. Just-in-time design and additive manufacture of patient-specific medical implants. Physics Procedia. 83:4–14, 2016.

    CAS  Google Scholar 

  57. Sing, S. L., J. An, W. Y. Yeong, and F. E. Wiria. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J. Orthop. Res. 34(3):369–385, 2016.

    CAS  PubMed  Google Scholar 

  58. Sproul, R. C., J. J. Iyengar, Z. Devcic, and B. T. Feeley. A systematic review of locking plate fixation of proximal humerus fractures. Injury 42(4):408–413, 2011.

    PubMed  Google Scholar 

  59. Stainless NA. Aisi316. 2007;13(1).

  60. Sutradhar, A., J. Park, D. Carrau, T. H. Nguyen, M. J. Miller, and G. H. Paulino. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput. 54(7):1123–1135, 2016.

    PubMed  Google Scholar 

  61. Tan, E., D. Lie, and M. K. Wong. Early outcomes of proximal humerus fracture fixation with locking plate and intramedullary fibular strut graft. Orthopedics 37(9):e822–e827, 2014.

    PubMed  Google Scholar 

  62. Tilton, M., G. S. Lewis, and G. P. Manogharan. Additive manufacturing of orthopedic implants. In: Orthopedic Biomaterials: Progress in Biology, Manufacturing, and Industry Perspectives, edited by B. Li, and T. Webster. Cham: Springer, 2018.

    Google Scholar 

  63. Toso, S. M., K. Menzel, Y. Motzkus, N. Adolphs, B. Hoffmeister, and J.-D. Raguse. Patient-specific implant in prosthetic craniofacial reconstruction. J Craniofac Surg. 26(7):2133–2135, 2015.

    PubMed  Google Scholar 

  64. Varga, P., L. Grünwald, J. A. Inzana, and M. Windolf. Fatigue failure of plated osteoporotic proximal humerus fractures is predicted by the strain around the proximal screws. J. Mech. Behav. Biomed. Mater. 75:68–74, 2017.

    PubMed  Google Scholar 

  65. Varga, P., J. A. Inzana, B. Gueorguiev, N. P. Südkamp, and M. Windolf. Validated computational framework for efficient systematic evaluation of osteoporotic fracture fixation in the proximal humerus. Med. Eng. Phys. 57:29–39, 2018.

    PubMed  Google Scholar 

  66. Vijayvargiya, M., A. Pathak, and S. Gaur. Outcome analysis of locking plate fixation in proximal humerus fracture. J Clin Diagnostic Res. 10(8):RC01–RC05, 2016.

    Google Scholar 

  67. Wanner, G. A., E. Wanner-Schmid, J. Romero, et al. Internal fixation of displaced proximal humeral fractures with two one-third tubular plates. J. Trauma 54(3):536–544, 2003.

    PubMed  Google Scholar 

  68. Winter, J. Using the Student’ s t-test with extremely small sample sizes. Pr Assessment Res Evalutaion. 18(10):1–12, 2013.

    Google Scholar 

  69. Zdero, R., M. Olsen, H. Bougherara, and E. H. Schemitsch. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis. 222:1175–1183, 2008.

    CAS  Google Scholar 

  70. Zhang, W., L. Zeng, Y. Liu, et al. The mechanical benefit of medial support screws in locking plating of proximal humerus fractures. PLoS ONE 9(8):3–10, 2014.

    Google Scholar 

  71. Zhang, L., J. Zheng, W. Wang, et al. The clinical benefit of medial support screws in locking plating of proximal humerus fractures: a prospective randomized study. Int. Orthop. 35(11):1655–1661, 2011.

    PubMed  PubMed Central  Google Scholar 

  72. Zhu, Y., Y. Lu, J. Shen, J. Zhang, and C. Jiang. Locking intramedullary nails and locking plates in the treatment of two-part proximal humeral surgical neck fractures: a prospective randomized trial with a minimum of three years of follow-up. J Bone Jt Surg 93(2):159–168, 2011.

    Google Scholar 

  73. Ziętala, M., T. Durejko, M. Polański, et al. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng., A 677:1–10, 2016.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Elaine Schmidt for her assistance in conducting the physical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guha P. Manogharan.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilton, M., Armstrong, A., Sanville, J. et al. Biomechanical Testing of Additive Manufactured Proximal Humerus Fracture Fixation Plates. Ann Biomed Eng 48, 463–476 (2020). https://doi.org/10.1007/s10439-019-02365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02365-3

Keywords

Navigation