Skip to main content
Log in

Scaffold Free Microtissue Formation for Enhanced Cartilage Repair

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Given the low self-healing capacity of fibrocartilage and hyaline cartilage, tissue engineering holds great promise for the development of new regenerative therapies. However, dedifferentiation of cartilage cells during expansion leads to fibrous tissue instead of cartilage. The purpose of our study was to generate 3D microtissues, spheroids, mimicking the characteristics of native fibrocartilage or articular cartilage to use as modular units for implantation in meniscal and articular cartilage lesions, respectively, within the knee joint. A set of parameters was assessed to create spheroids with a geometry compatible with 3D bioprinting for the creation of a biomimetic cartilage construct. Fibrochondrocytes (FC) and articular chondrocytes (AC) spheroids were created using a high-throughput microwell system. Spheroid morphology,  viability, proliferation and extracellular matrix were extensively screened. After 2D expansion, FC and AC dedifferentiated, resulting in a loss of cartilage specific extracellular matrix proteins. Spheroid formation did not result in FC redifferentiation, but did lead to redifferentiation of AC, resulting in microtissues displaying collagen II, aggrecan and glycosaminoglycans. This study demonstrates 3D cartilage mimics that could have a potential application in the next generation of Autologous Chondrocyte Implantation procedures. Moreover, spheroids can be used as building blocks to create cartilage constructs by bioprinting in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adesida, A. B., L. M. Grady, W. S. Khan, S. J. Millward-Sadler, D. M. Salter, and T. E. Hardingham. Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res. Ther. 9:R69, 2007.

    PubMed  PubMed Central  Google Scholar 

  2. Anada, T., C.-C. Pan, A. Stahl, S. Mori, J. Fukuda, O. Suzuki, and Y. Yang. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int. J. Mol. Sci. 20:1096, 2019.

    PubMed Central  Google Scholar 

  3. Anderer, U., and J. Libera. In vitro engineering of human autogenous cartilage. J. Bone Miner. Res. 17:1420–1429, 2002.

    PubMed  Google Scholar 

  4. Anderson, D. E. J., and K. A. Athanasiou. Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering. Ann. Biomed. Eng. 36:1992–2001, 2008.

    PubMed  Google Scholar 

  5. Babur, B. K., et al. The interplay between chondrocyte redifferentiation pellet size and oxygen concentration. PLoS ONE 8:e58865, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Basad, E., F. R. Wissing, P. Fehrenbach, M. Rickert, J. Steinmeyer, and B. Ishaque. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg. Sport Traumatol. Arthrosc. 23:3729–3735, 2015.

    Google Scholar 

  7. Becher, C., V. Laute, S. Fickert, W. Zinser, P. Niemeyer, T. John, P. Diehl, T. Kolombe, R. Siebold, and J. Fay. Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial. J. Orthop. Surg. Res. 12:71, 2017.

    PubMed  PubMed Central  Google Scholar 

  8. Berneel, E., C. Philips, H. Declercq, and R. Cornelissen. Redifferentiation of high-throughput generated fibrochondrocyte micro-aggregates: impact of low oxygen tension. Cells Tissues Organs 202:369–381, 2016.

    CAS  PubMed  Google Scholar 

  9. Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87:77–95, 2008.

    PubMed  Google Scholar 

  10. Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.

    CAS  PubMed  Google Scholar 

  11. Caron, M. M. J., P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M. Surtel, A. Cremers, L. W. van Rhijn, and T. J. M. Welting. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr. Cartil. 20:1170–1178, 2012.

    CAS  PubMed  Google Scholar 

  12. Chu, C. R., M. Szczodry, and S. Bruno. Animal models for cartilage regeneration and repair. Tissue Eng. Part B Rev. 16:105–115, 2010.

    PubMed  PubMed Central  Google Scholar 

  13. Cui, X., A. Hasegawa, M. Lotz, and D. D’Lima. Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol. Bioeng. 109:2369–2380, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Daly, A. C., et al. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8:045002, 2016.

    PubMed  Google Scholar 

  15. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    CAS  PubMed  Google Scholar 

  16. De Moor, L., I. Merovci, S. Baetens, J. Verstraeten, P. Kowalska, D. V. Krysko, W. H. De Vos, and H. Declercq. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 10(3):35009, 2018.

    Google Scholar 

  17. Deponti, D., A. Di Giancamillo, C. Scotti, G. M. Peretti, and I. Martin. Animal models for meniscus repair and regeneration. J. Tissue Eng. Regen. Med. 9:512–527, 2015.

    PubMed  Google Scholar 

  18. Duval, K., H. Grover, L. H. Han, Y. Mou, A. F. Pegoraro, J. Fredberg, and Z. Chen. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng, J., K. Mineda, S.-H. Wu, T. Mashiko, K. Doi, S. Kuno, K. Kinoshita, K. Kanayama, R. Asahi, A. Sunaga, and K. Yoshimura. An injectable non-cross-linked hyaluronic-acid gel containing therapeutic spheroids of human adipose-derived stem cells. Sci. Rep. 7:1548, 2017.

    PubMed  PubMed Central  Google Scholar 

  20. Fox, A. J. S., F. Wanivenhaus, A. J. Burge, R. F. Warren, and S. A. Rodeo. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin. Anat. 28:269–287, 2015.

    PubMed  Google Scholar 

  21. Freymann, U., M. Endres, U. Goldmann, M. Sittinger, and C. Kaps. Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation. Osteoarthr. Cartil. 21:773–781, 2013.

    CAS  PubMed  Google Scholar 

  22. Futrega, K., J. S. Palmer, M. Kinney, W. B. Lott, M. D. Ungrin, P. W. Zandstra, and M. R. Doran. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials 62:1–12, 2015.

    CAS  PubMed  Google Scholar 

  23. Grogan, S. P., C. Pauli, M. K. Lotz, and D. D. D’Lima. Relevance of meniscal cell regional phenotype to tissue engineering. Connect. Tissue Res. 58:259–270, 2017.

    CAS  PubMed  Google Scholar 

  24. Gunja, N. J., and K. A. Athanasiou. Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res. Ther. 9:R93, 2007.

    PubMed  PubMed Central  Google Scholar 

  25. Hoben, G. M., J. C. Hu, R. A. James, and K. A. Athanasiou. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng. 13:939–946, 2007.

    CAS  PubMed  Google Scholar 

  26. Huang, B. J., J. C. Hu, and K. A. Athanasiou. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ibold, Y., S. Frauenschuh, C. Kaps, M. Sittinger, J. Ringe, and P. M. Goetz. Development of a high-throughput screening assay based on the 3-dimensional pannus model for rheumatoid arthritis. J. Biomol. Screen. 12:956–965, 2007.

    CAS  PubMed  Google Scholar 

  28. Korpershoek, J. V., T. S. de Windt, M. H. Hagmeijer, L. A. Vonk, and D. B. Saris. Cell-based meniscus repair and regeneration: at the brink of clinical translation? A systematic review of preclinical studies. Orthopaedic Journal of Sports Medicine. 5(2):2325967117690131, 2017.

    PubMed  PubMed Central  Google Scholar 

  29. Krill, M., N. Early, J. S. Everhart, and D. C. Flanigan. Autologous chondrocyte implantation (ACI) for knee cartilage defects. JBJS Rev. 6:e5, 2018.

    PubMed  Google Scholar 

  30. Madeira, C., A. Santhagunam, J. B. Salgueiro, and J. M. S. Cabral. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol. 33:35–42, 2015.

    CAS  PubMed  Google Scholar 

  31. Markway, B. D., G.-K. Tan, G. Brooke, J. E. Hudson, J. J. Cooper-White, and M. R. Doran. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 19:29–42, 2010.

    PubMed  Google Scholar 

  32. Marsano, A., S. J. Millward-Sadler, D. M. Salter, A. Adesida, T. Hardingham, E. Tognana, E. Kon, C. Chiari-Grisar, S. Nehrer, M. Jakob, and I. Martin. Differential cartilaginous tissue formation by human syno vial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthr. Cartil. 15:48–58, 2007.

    CAS  PubMed  Google Scholar 

  33. Martinez, I., J. Elvenes, R. Olsen, K. Bertheussen, and O. Johansen. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment. Cell Transplant. 17:987–996, 2008.

    PubMed  Google Scholar 

  34. McCarthy, H. S., and S. Roberts. A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation. Osteoarthr. Cartil. 21:2048–2057, 2013.

    CAS  PubMed  Google Scholar 

  35. Medvedeva, E., E. Grebenik, S. Gornostaeva, V. Telpuhov, A. Lychagin, P. Timashev, and A. Chagin. Repair of damaged articular cartilage: current approaches and future directions. Int. J. Mol. Sci. 19(8):2366, 2018.

    PubMed Central  Google Scholar 

  36. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moldovan, N., L. Maldovan, and M. Raghunath. Of balls, inks and cages: Hybrid biofabrication of 3D tissue analogs. Int. J. Bioprinting 5:1, 2018.

    Google Scholar 

  38. Mouser, V. H. M., R. Levato, L. J. Bonassar, D. D. D’Lima, D. A. Grande, T. J. Klein, D. B. F. Saris, M. Zenobi-Wong, D. Gawlitta, and J. Malda. Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration. Cartilage 8:327–340, 2017.

    PubMed  Google Scholar 

  39. Murphy, M. K., T. E. Masters, J. C. Hu, and K. A. Athanasiou. Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation. Cell Transplant. 24:235–245, 2015.

    PubMed  Google Scholar 

  40. Negoro, T., Y. Takagaki, H. Okura, and A. Matsuyama. Trends in clinical trials for articular cartilage repair by cell therapy. NPJ Regen. Med. 3:17, 2018.

    PubMed  PubMed Central  Google Scholar 

  41. Nichol, J. W., and A. Khademhosseini. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ovsianikov, A., A. Khademhosseini, and V. Mironov. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 36:348–357, 2018.

    CAS  PubMed  Google Scholar 

  43. Peck, Y., L. T. Leom, P. F. P. Low, and D.-A. Wang. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J. Tissue Eng. Regen. Med. 12:e237–e249, 2018.

    CAS  PubMed  Google Scholar 

  44. Penick, K. J., L. A. Solchaga, and J. F. Welter. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques 39:687–691, 2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rezende, R. A., F. D. A. S. Pereira, V. Kasyanov, D. T. Kemmoku, I. Maia, J. V. L. da Silva, and V. Mironov. Scalable biofabrication of tissue spheroids for organ printing. Proc. CIRP 5:276–281, 2013.

    Google Scholar 

  46. Ruedel, A., S. Hofmeister, and A.-K. Bosserhoff. Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells. Int. J. Clin. Exp. Pathol. 6:3042–3048, 2013.

    PubMed  PubMed Central  Google Scholar 

  47. Schon, B. S., G. J. Hooper, and T. B. F. Woodfield. Modular tissue assembly strategies for biofabrication of engineered cartilage. Ann. Biomed. Eng. 45:100–114, 2017.

    CAS  PubMed  Google Scholar 

  48. Schubert, T., S. Anders, E. Neumann, J. Schölmerich, F. Hofstädter, J. Grifka, U. Müller-Ladner, J. Libera, and J. Schedel. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int. J. Mol. Med. 23:455–460, 2009.

    CAS  PubMed  Google Scholar 

  49. Smith-Mungo, L. I., and H. M. Kagan. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 16:387–398, 1998.

    CAS  PubMed  Google Scholar 

  50. Sun, L., X. Wang, and D. L. Kaplan. A 3D cartilage—inflammatory cell culture system for the modeling of human osteoarthritis. Biomaterials 32:5581–5589, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan, G.-K., D. L. M. Dinnes, P. T. Myers, and J. J. Cooper-White. Effects of biomimetic surfaces and oxygen tension on redifferentiation of passaged human fibrochondrocytes in 2D and 3D cultures. Biomaterials 32:5600–5614, 2011.

    CAS  PubMed  Google Scholar 

  52. Tarafder, S., J. Gulko, D. Kim, K. H. Sim, S. Gutman, J. Yang, J. L. Cook, and C. H. Lee. Effect of dose and release rate of CTGF and TGFβ3 on avascular meniscus healing. J. Orthop. Res. 2019. https://doi.org/10.1002/jor.24287.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Teixeira, L. M., J. C. Leijten, J. Sobral, R. Jin, A. A. van Apeldoorn, J. Feijen, C. van Blitterswijk, P. J. Dijkstra, and M. Karperien. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cell Mater. 23:387–399, 2012.

    Google Scholar 

  54. Upton, M. L., J. Chen, and L. A. Setton. Region-specific constitutive gene expression in the adult porcine meniscus. J. Orthop. Res. 24:1562–1570, 2006.

    CAS  PubMed  Google Scholar 

  55. Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65:109–126, 2002.

    PubMed  Google Scholar 

  56. Welter, J. F., L. A. Solchaga, and K. J. Penick. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay. Biotechniques 42:732–737, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Young, B., J. Lowe, A. Stevens, and J. Heath. Wheater’s functional histology. A text and colour Atlas. Amsterdam: Elsevier, 2006.

    Google Scholar 

  58. Yu, Y., K. K. Moncal, J. Li, W. Peng, I. Rivero, J. A. Martin, and I. T. Ozbolat. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci. Rep. 6:28714, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, L., P. Su, C. Xu, J. Yang, W. Yu, and D. Huang. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 32:1339–1346, 2010.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors declare no conflicts of interest and disclose any financial and personal relationships with persons or organizations that could potentially bias this work and conclusions. The authors would like to thank ORSI Melle for providing the biological materials, Prof. Dr. Jan Vanfleteren and NaMiFab Ghent University for kindly providing the PDMS molds and Prof. Dr. Björn Heindryckx and Prof. Dr. Jolanda van Hengel (Ghent University) for access to the low oxygen incubator. We also would like to thank Greet De Smet, Leen Pieters and Johanna Aernoudt (Ghent University) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Declercq.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Moor, L., Beyls, E. & Declercq, H. Scaffold Free Microtissue Formation for Enhanced Cartilage Repair. Ann Biomed Eng 48, 298–311 (2020). https://doi.org/10.1007/s10439-019-02348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02348-4

Keywords

Navigation