Skip to main content
Log in

Nonlinear Inversion of Ultrasonic Dispersion Curves for Cortical Bone Thickness and Elastic Velocities

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, a nonlinear grid-search inversion has been developed to estimate the thickness and elastic velocities of long cortical bones, which are important determinants of bone strength, from axially-transmitted ultrasonic data. The inversion scheme is formulated in the dispersive frequency-phase velocity domain to recover bone properties. The method uses ultrasonic guided waves to retrieve overlying soft tissue thickness, cortical thickness, compressional, and shear-wave velocities of the cortex. The inversion strategy requires systematic examination of a large set of trial dispersion-curve solutions within a pre-defined model space to match the data with minimum cost in a least-squares sense. The theoretical dispersion curves required to solve the inverse problem are computed for bilayered bone models using a semi-analytical finite-element method. The feasibility of the proposed approach was demonstrated by the numerically simulated data for a 1 mm soft tissue-5 mm bone bilayer and ex-vivo data from a bovine femur plate with an overlying 2 mm-thick soft-tissue mimic. The bootstrap method was employed to evaluate the inversion uncertainty and stability. Our results have shown that the cortical thickness and wave speeds could be recovered with fair accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anast, G. T., T. Fields, and I. M. Siegel. Ultrasonic technique for the evaluation of bone fractures. Am. J. Phys. Med. 37:157–159, 1958.

    Article  CAS  Google Scholar 

  2. Beaty, K. S., D. Schmitt, and M. D. Sacchi. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophys. J. Int. 151:622–631, 2002.

    Article  Google Scholar 

  3. Bernard, S., V. Monteiller, D. Komatitsch, and P. Lasaygues. Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging. Phys. Med. Biol. 62:7011–7035, 2017.

    Article  Google Scholar 

  4. Bochud, N., Q. Vallet, Y. Bala, H. Follet, J. G. Minonzio, and P. Laugier. Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization. Phys. Med. Biol. 61:6953–6974, 2016.

    Article  CAS  Google Scholar 

  5. Bochud, N., Q. Vallet, J. G. Minonzio, and P. Laugier. Predicting bone strength with ultrasonic guided waves. Sci. Rep. 7:43628, 2017.

    Article  Google Scholar 

  6. Chiras, D. D. Human Biology (Chapter 10), Evergreen, CO: Jones & Bartlett Learning, 2013.

    Google Scholar 

  7. Efron, B. Bootstrap methods: another look at the Jackknife. Ann. Stat. 7:1–26, 1979.

    Article  Google Scholar 

  8. Foiret, J., J. G. Minonzio, C. Chappard, M. Talmant, and P. Laugier. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61:1478–1488, 2014.

    Article  Google Scholar 

  9. Hesse, D. and P. Cawley. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54:2344–2356, 2007.

    Article  Google Scholar 

  10. Le, L. H., Y. J. Gu, Y. P. Li, and C. Zhang. Probing long bones with ultrasonic body waves. Appl. Phys. Lett. 96:114102, 2010.

    Article  Google Scholar 

  11. Li, G. Y., Q. He, L. Jia, P. He, J. Luo, and Y. Cao. An inverse method to determine the arterial stiffness with guided axial waves. Ultrasound. Med. Biol. 43:505–516, 2017.

    Article  Google Scholar 

  12. Lowe, M. J., P. Cawley, and A. Galvagni. Monitoring of corrosion in pipelines using guided waves and permanently installed transducers. J. Acoust. Soc. Am. 132:1932, 2012.

    Article  Google Scholar 

  13. Menke, W. Geophysical Data Analysis: Discrete Inverse Theory. Oxford: Academic Press, Elsevier, 2012.

    Google Scholar 

  14. Moilanen, P. Ultrasonic guided waves in bone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55:1277–1286, 2008.

    Article  Google Scholar 

  15. Moreau, L., C. Lachaud, R. Thery, M. V. Predoi, D. Marsan, E. Larose, J. Weiss, and M. Montagnat. Monitoring ice thickness and elastic properties from the measurement of leaky guided waves: a laboratory experiment. J. Acoust. Soc. Am. 142:2873–2880, 2017.

    Article  Google Scholar 

  16. Nguyen, V. H. and S. Naili. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method. Int. J. Numer. Method. Biomed. Eng. 28:861–876, 2012.

    Article  Google Scholar 

  17. Nguyen, V. H. and S. Naili. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study. Comput. Methods. Biomech. Biomed. Eng. 16:963–964, 2013.

    Article  Google Scholar 

  18. Nguyen, T. K. C., L. H. Le, T. N. Tran, M. D. Sacchi, and E. Lou. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in-vitro bone studies. Ultrasonics. 54:1178–1185, 2014.

    Article  Google Scholar 

  19. Nguyen, V. H., T. N. Tran, M. D. Sacchi, S. Naili, and L. H. Le. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method. Comput. Biol. Med. 87:371–381, 2017.

    Article  Google Scholar 

  20. Rose, J. L. Ultrasonic Guided Waves in Solid Media. New York: Cambridge University Press, 2014.

    Book  Google Scholar 

  21. Sen, M. and P. L. Stoffa. Global Optimization Methods in Geophysical Inversion. Amsterdam: Elsevier Science, 1995.

    Google Scholar 

  22. Tasinkevych, Y., J. Podhajecki, K. Falinska, and J. Litniewski. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: bone phantom and in-vitro study. Ultrasonics. 65:105–112, 2016.

    Article  Google Scholar 

  23. Tran, T. N., L. Stieglitz, Y. J. Gu, and L. H. Le. Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue. Ultrasound. Med. Biol. 39:2422–2430, 2013.

    Article  Google Scholar 

  24. Tran, T. N., L. H. Le, M. D. Sacchi, V. H. Nguyen and E. Lou. Multichannel filtering and reconstruction of ultrasonic guided wave fields using time intercept-slowness transform. J. Acoust. Soc. Am. 136:248–259, 2014.

    Article  Google Scholar 

  25. Tran, T. N., K. T. Nguyen, M. D. Sacchi, and L. H. Le. Imaging ultrasonic dispersive guided wave energy in long bones using linear Radon transform. Ultrasound. Med. Biol. 40:2715–2727, 2014.

    Article  Google Scholar 

  26. Tran, T. N., L. H. Le, M. D. Sacchi, and V. H. Nguyen. Sensitivity analysis of ultrasonic guided waves propagating in tri-layered bone models: a numerical study. Biomech. Model. Mechanobiol. 17:1269–1279, 2018.

    Article  Google Scholar 

  27. Ulrych, T. J. and M. D. Sacchi. Information-Based Inversion and Processing with Applications. Oxford: Elsevier Science, 2005.

    Google Scholar 

  28. Vallet, Q., N. Bochud, C. Chappard, P. Laugier, and J. G. Minonzio. In vivo characterization of cortical bone using guided waves measured by axial transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 63:1361–1371, 2016.

    Article  Google Scholar 

  29. Werner, P. Knowledge about osteoporosis: assessment, correlates and outcomes. Osteoporosis. Int. 16:115–127, 2005.

    Article  Google Scholar 

  30. Wilcox, P., M. J. Lowe, and P. Cawley. Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52:653–665, 2005.

    Article  Google Scholar 

  31. Yeh, C. H. and C. H. Yang. Characterization of mechanical and geometrical properties of a tube with axial and circumferential guided waves. Ultrasonics. 51:472–479, 2011.

    Article  Google Scholar 

  32. Yu, X., M. Ratassepp, and Z. Fan. Damage detection in quasi-isotropic composite bends using ultrasonic feature guided waves. Compos. Sci. Technol. 141:120–129, 2017.

    Article  Google Scholar 

  33. Zhang, Z. D., G. Schuster, Y. Liu, S. M. Hanafy, and J. Li. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient. J. Appl. Geophys. 133:9–15, 2016.

    Article  Google Scholar 

  34. Zheng, R., L. H. Le, M. D. Sacchi, and E. Lou. Imaging internal structure of long bones using wave scattering theory. Ultrasound. Med. Biol. 41:2955–2965, 2015.

    Article  Google Scholar 

Download references

Acknowledgements

L. H. Le acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. The work was also supported by the National Natural Science Foundation of China (11525416 and 11827808), the International Scientific and Technological Cooperation Project of Shanghai (17510710700), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01). Dr. Le is currently a Senior Visiting Scholar at the State Key Laboratory of ASIC and System of Fudan University for the joint work. T.N.H.T. Tran acknowledges Alberta Innovates-Technology Futures (AITF) and the generous supporters of Lois Hole Hospital through Women and Children’s Health Research Institute (WCHRI) for the graduate studentships.

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Le.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.N.H.T., Sacchi, M.D., Ta, D. et al. Nonlinear Inversion of Ultrasonic Dispersion Curves for Cortical Bone Thickness and Elastic Velocities. Ann Biomed Eng 47, 2178–2187 (2019). https://doi.org/10.1007/s10439-019-02310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02310-4

Keywords

Navigation