Skip to main content
Log in

A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transoral robotic surgery (TORS) allows for access to oropharyngeal regions in an effective and minimally invasive manner. However, safe TORS access to deep pharyngeal (such as hypopharynx) sites remains a great challenge for current surgical robotic systems. In this work, we introduce a novel continuum robot with an optimized flexible parallel mechanism, to meet stringent requirements imposed by TORS on size, workspace, flexibility, and compliance. The system is comprised of two parts, a guidance part and an execution part, and achieves 11 controllable degrees of freedom. The execution part of the robot, based on the optimized flexible parallel mechanism, is able to reach deep sites in the oropharynx and larynx with the assistance of the continuum guidance part. In addition to the mechanical design, extensive analysis and experiments were carried out. Kinematic models were derived and the reachable workspace of the robot was verified to cover the entire target surgical area. Experimental results indicate that the robot achieves significantly enhanced compliance. Additionally, the designed robot can withstand a load of 1.5 N within the allowable range of the deflection. The positioning errors caused by the interference between different mechanisms can be effectively eliminated using the proposed compensation method. The maximum displacement error of this system under various conditions is less than 2 mm and the maximum bending error is less than 7.5°, which are satisfied for TORS. Cadaver trials were conducted to further demonstrate the feasibility. The reduced setup time and the reduced time to access the target site indicate that the developed surgical robotic system can achieve better operative efficiency in TORS when compared with current systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ayav, A., L. Bresler, L. Brunand, and P. Boissel. Early results of one-year robotic surgery using the Da Vinci system to perform advanced laparoscopic procedures. J. Gastrointest. Surg. 8:720–726, 2004.

    Article  PubMed  Google Scholar 

  2. Bergeles, C., and G. Z. Yang. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans. Biomed. Eng. 61:1565–1576, 2014.

    Article  PubMed  Google Scholar 

  3. Black, C. B., J. Till, and D. C. Rucker. Parallel continuum robots: modeling, analysis, and actuation-based force sensing. IEEE Trans. Robot. 34:29–47, 2018.

    Article  Google Scholar 

  4. Burgner-Kahrs, J., D. C. Rucker, and H. Choset. Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31:1261–1280, 2015.

    Article  Google Scholar 

  5. Chang, T., Y. Tian, C. Li, X. Gu, K. Li, H. Yang, P. Sanghani, C. Lim, H. Ren, and P. Y. Chen. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 2019. https://doi.org/10.1021/acsami.9b00166.

    Article  PubMed  Google Scholar 

  6. Conrad, B. L., and M. R. Zinn. Interleaved continuum-rigid manipulation approach: development and functional evaluation of a clinical scale manipulator, pp. 4290–4296, 2014. https://doi.org/10.1109/IROS.2014.6943168.

  7. Daniel, M. M. L. M. Pharyngeal dimensions in healthy men and women. Clinics 62:5–10, 2007.

    Article  PubMed  Google Scholar 

  8. Dogangil, G., B. L. Davies, F. Rodriguez, and Y. Baena. A review of medical robotics for minimally invasive soft tissue surgery. Proc. Inst. Mech. Eng. H 224:653–679, 2009.

    Article  Google Scholar 

  9. Guthart, G., and J. K. Salisbury Jr. The IntuitiveTM telesurgery system: overview and application, 2000. https://doi.org/10.1109/robot.2000.844121.

  10. Ho, M., Y. Kim, S. S. Cheng, R. Gullapalli, and J. P. Desai. Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot. Int. J. Robot. Res. 34:1147–1163, 2015.

    Article  Google Scholar 

  11. Hockstein, N. G., and B. W. O’Malley. Transoral robotic surgery. Oper. Tech. Otolaryngol. Head Neck Surg. 19:67–71, 2008.

    Article  Google Scholar 

  12. Hong, M. B., and Y. H. Jo. Design of a novel 4-DOF wrist-type surgical instrument with enhanced rigidity and dexterity. IEEE/ASME Trans. Mechatron. 19:500–511, 2014.

    Article  Google Scholar 

  13. Hong, W., L. Xie, J. Liu, Y. Sun, K. Li, and H. Wang. Development of a novel continuum robotic system for maxillary sinus surgery. IEEE/ASME Trans. Mechatron. 23:1226–1237, 2018.

    Article  Google Scholar 

  14. Johnson, P. J., C. R. Serrano, M. Castro, R. Kuenzler, and H. Choset. Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 2013. https://doi.org/10.1002/lary.23512.

    Article  PubMed  Google Scholar 

  15. Li, C., X. Gu, X. Xiao, C. M. Lim, and H. Ren. A robotic system with multi-channel flexible parallel manipulators for single port access surgery. IEEE Trans. Ind. Inform. 2018. https://doi.org/10.1109/TII.2018.2856108.

    Article  Google Scholar 

  16. Li, Z., and C. S. H. Ng. Future of uniportal video-assisted thoracoscopic surgery—emerging technology. Ann. Cardiothorac. Surg. 5:127–132, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, Z., L. Wu, H. Ren, and H. Yu. Kinematic comparison of surgical tendon-driven manipulators and concentric tube manipulators. Mech. Mach. Theory 107:148–165, 2017.

    Article  Google Scholar 

  18. Mandapathil, M., B. Greene, and T. Wilhelm. Transoral surgery using a novel single-port flexible endoscope system. Eur. Arch. Otorhinolaryngol. 2015. https://doi.org/10.1007/s00405-014-3177-1.

    Article  PubMed  Google Scholar 

  19. Nadeau, C., H. Ren, A. Krupa, and P. E. Dupont. Intensity-based visual servoing for instrument and tissue tracking in 3D ultrasound volumes. IEEE Trans. Autom. Sci. Eng. 12:367–371, 2015.

    Article  Google Scholar 

  20. Park, Y. M., W. S. Kim, H. K. Byeon, S. Y. Lee, and S. Kim. Oncological and functional outcomes of transoral robotic surgery for oropharyngeal cancer. Br. J. Oral Maxillofac. Surg. 51:408–412, 2013.

    Article  PubMed  Google Scholar 

  21. Phee, S. J., S. C. Low, V. A. Huynh, A. P. Kencana, Z. L. Sun, and K. Yang. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES). Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:1192–1195, 2009.

    CAS  PubMed  Google Scholar 

  22. Poon, H., C. Li, W. Gao, H. Ren, and C. M. Lim. Evolution of robotic systems for transoral head and neck surgery. Oral Oncol. 87:82–88, 2018.

    Article  PubMed  Google Scholar 

  23. Reboulet, C., and S. Durand-Leguay. Optimal design of redundant parallel mechanism for endoscopic surgery, pp. 1432–1437, 1999. https://doi.org/10.1109/IROS.1999.811680.

  24. Ren, H., C. M. Lim, J. Wang, W. Liu, S. Song, Z. Li, G. Herbert, Z. T. H. Tse, and Z. Tan. Computer-assisted transoral surgery with flexible robotics and navigation technologies: a review of recent progress and research challenges. Crit. Rev. Biomed. Eng. 41:365–391, 2013.

    Article  PubMed  Google Scholar 

  25. Rivera-Serrano, C. M., P. Johnson, B. Zubiate, R. Kuenzler, H. Choset, M. Zenati, S. Tully, and U. Duvvuri. A transoral highly flexible robot. Laryngoscope 122:1067–1071, 2012.

    Article  PubMed  Google Scholar 

  26. Rock, J. P. T. F. Transoral surgery: an anatomic study. Skull Base Surg. 3:109, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rose, A., C. Wohlleber, S. Kassner, H. F. Schlaak, and R. Werthschutzky. A novel piezoelectric driven laparoscopic instrument with multiple degree of freedom parallel kinematic structure, pp. 2162–2167, 2009. https://doi.org/10.1109/IROS.2009.5354507.

  28. Shang, J., C. J. Payne, J. Clark, D. P. Noonan, and K. W. Kwok. Design of a multitasking robotic platform with flexible arms and articulated head for minimally invasive surgery, pp. 1988–1993, 2012. https://doi.org/10.1109/iros.2012.6385567.

  29. Smisek, J. P. T. 3D Camera Calibration. MSc Thesis, 2011.

  30. Taylor, R. H., and D. Stoianovici. Medical robotics in computer-integrated surgery. IEEE Trans. Robot. Autom. 2016. https://doi.org/10.1109/TRA.2003.817058.

    Article  Google Scholar 

  31. Vitiello, V., S. L. Lee, T. P. Cundy, and G. Z. Yang. Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng. 6:111–126, 2013.

    Article  PubMed  Google Scholar 

  32. Wu, L., X. Yang, K. Chen, and H. Ren. A minimal POE-based model for robotic kinematic calibration with only position measurements. IEEE Trans. Autom. Sci. Eng. 12:758–763, 2015.

    Article  Google Scholar 

  33. Xu, K., and N. Simaan. Actuation compensation for flexible surgical snake-like robots with redundant remote actuation, pp. 4148–4154, 2006. https://doi.org/10.1109/robot.2006.1642340.

  34. Xu, K., R. E. Goldman, J. Ding, P. K. Allen, D. L. Fowler, and N. Simaan. System design of an insertable robotic effector platform for single port access (SPA) surgery, pp. 5546–5552, 2009. https://doi.org/10.1109/iros.2009.5354028.

  35. Xu, K., J. Zhao, and M. Fu. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans. Mechatron. 20:2133–2145, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Singapore NMRC Bedside and Bench under Grant R-397-000-245-511 and National Key Research and Development Program, The Ministry of Science and Technology (MOST) of China (No. 2018YFB1307703), both awarded to Dr. Hongliang Ren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Li, C., Xiao, X. et al. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism. Ann Biomed Eng 47, 1329–1344 (2019). https://doi.org/10.1007/s10439-019-02241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02241-0

Keywords

Navigation