Skip to main content
Log in

Design of pH-Responsive Biomaterials to Enable the Oral Route of Hematological Factor IX

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The oral administration of hematological factor IX (FIX) can offer a convenient prophylactic treatment for hemophilia B patients. pH-Responsive hydrogels based on poly(methacrylic acid)-grafted-poly(ethylene glycol) (P(MAA-g-EG)) have been engineered as delivery vehicles for FIX. In oral delivery, such hydrogel carriers protected FIX from the gastric environment and released it under intestinal conditions as demonstrated by evaluation of the loading and release of FIX. Tailoring of the hydrogel networks improved the loading of FIX within the microcarriers, which is critical for minimizing protein degradation. Optimizing the loading conditions by increasing the incubation time and using a reduced ionic strength buffer further improved the delivery potential of the microcarriers. The presence of the microcarriers significantly enhanced the oral absorption of FIX in vitro. As shown in this work, P(MAA-g-EG) microcarriers are promising candidates for the oral delivery of FIX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

FaSSGF:

Fasted-state simulated gastric fluid

FaSSIF:

Fasted-state simulated intestinal fluid

hFIX:

Human factor IX

MAA:

Methacrylic acid

PEGDMA:

Poly(ethylene glycol) dimethacrylate

P(MAA-g-EG):

Poly(methacrylic acid)-grafted-poly(ethylene glycol)

References

  1. Brannon-Peppas, L., and N. A. Peppas. Equilibrium swelling behavior of dilute ionic hydrogels in electrolytic solutions. J. Control Release 16:319–329, 1991.

    Article  CAS  Google Scholar 

  2. Carr, D. A., M. Gomez-Burgaz, M. C. Boudes, and N. A. Peppas. Complexation hydrogels for the oral delivery of growth hormone and salmon calcitonin. Ind. Eng. Chem. Res. 49:11991–11995, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Darby, S. C., S. W. Kan, R. J. Spooner, P. L. F. Giangrande, F. G. H. Hill, C. R. M. Hay, C. A. Lee, C. A. Ludlam, M. Williams, and U. K. H. C. Doctors. Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV. Blood 110:815–825, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, V., N. Doshi, and S. Mitragotri. Permeation of insulin, calcitonin and exenatide across Caco-2 monolayers: measurement using a rapid, 3-day system. PLoS One 8:e57136, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hilgendorf, C., H. Spahn-Langguth, C. G. Regardh, E. Lipka, G. L. Amidon, and P. Langguth. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 89:63–75, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Ichikawa, H., and N. A. Peppas. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers. J. Biomed. Mater. Res. A 67A:609–617, 2003.

    Article  CAS  Google Scholar 

  7. Kamei, N., M. Morishita, H. Chiba, N. J. Kavimandan, N. A. Peppas, and K. Takayama. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin. J. Control Release 134:98–102, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kessler, C. M., and G. Mariani. Clinical manifestations and therapy of the hemophilias. In: Hemostasis and Thrombosis: Basic Principles and Clinical Practice, edited by R. W. Colman, J. Hirsh, V. J. Marder, A. W. Clowes, and J. N. George. Philadelphia: Lippincott-Raven, 2006, pp. 887–904.

    Google Scholar 

  9. Klinger, D., and K. Landfester. Enzymatic- and light-degradable hybrid nanogels: crosslinking of polyacrylamide with acrylate-functionalized Dextrans containing photocleavable linkers. J. Polym. Sci. A Polym. Chem. 50:1062–1075, 2012.

    Article  CAS  Google Scholar 

  10. Knipe, J. M., F. Chen, and N. A. Peppas. Enzymatic biodegradation of hydrogels for protein delivery targeted to the small intestine. Biomacromolecules 16:962–972, 2015.

    Article  CAS  PubMed  Google Scholar 

  11. Koetting, M. C., and N. A. Peppas. pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins. Int. J. Pharm. 471:83–91, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon, K.-C., D. Verma, N. D. Singh, R. Herzog, and H. Daniell. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv. Drug Deliv. Rev. 65:782–799, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowman, A. M., M. Morishita, M. Kajita, T. Nagai, and N. A. Peppas. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 88:933–937, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Mancuso, M. E., L. Berardinelli, C. Beretta, M. Raiteri, E. Pozzoli, and E. Santagostino. Improved treatment feasibility in children with hemophilia using arteriovenous fistulae: the results after 7 years of follow-up. Haematologica 94:687–692, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morishita, M., T. Goto, K. Nakamura, A. M. Lowman, K. Takayama, and N. A. Peppas. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J. Control Release 110:587–594, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakamura, K., R. J. Murray, J. I. Joseph, N. A. Peppas, M. Morishita, and A. M. Lowman. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Control Release 95:589–599, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Peppas, N. A., P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50:27–46, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Peppas N. A. and S. D. Horava. Polymers for Delivery of Factor VIII and/or Factor IX. [Patent Pending].

  19. Sharpe, L. A., A. M. Daily, S. D. Horava, and N. A. Peppas. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin. Drug Deliv. 11:901–915, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Verma, D., B. Moghimi, P. A. LoDuca, H. D. Singh, B. E. Hoffman, R. W. Herzog, and H. Daniell. Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc. Natl. Acad. Sci. USA 107:7101–7106, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. White, 2nd, G. C., F. Rosendaal, L. M. Aledort, J. M. Lusher, C. Rothschild, and J. Ingerslev. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 85:560, 2001.

    CAS  Google Scholar 

  22. Wood, K. M., G. M. Stone, and N. A. Peppas. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules 9:1293–1298, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood, K. M., G. M. Stone, and N. A. Peppas. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models. Acta Biomater. 6:48–56, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health (R01-EB-000246-21) and the Fletcher S. Pratt Foundation. SDH acknowledges support from the National Science Foundation Graduate Research Fellowship Program (DGE-1110007) and the P.E.O. Scholar Award. The authors thank the Microscopy and Imaging Facility of the Institute for Cellular and Molecular Biology at The University of Texas at Austin for facilitating the use of SEM microscopy. The authors would also like to acknowledge Katie Moy and Joel Liou for their assistance with polymer synthesis and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Peppas.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horava, S.D., Peppas, N.A. Design of pH-Responsive Biomaterials to Enable the Oral Route of Hematological Factor IX. Ann Biomed Eng 44, 1970–1982 (2016). https://doi.org/10.1007/s10439-016-1566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1566-x

Keywords

Navigation