Skip to main content

Advertisement

Log in

Telemedical Wearable Sensing Platform for Management of Chronic Venous Disorder

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Enabled by emerging wearable sensors, telemedicine can potentially offer personalized medical services to long-term home care or remote clinics in the future, which can be particularly helpful in the management of chronic diseases. The wireless wearable pressure sensing system reported in this article provides an excellent example of such an innovation, whereby periodic or continuous monitoring of interface pressure can be obtained to guide routine compression therapy, the cornerstone of chronic venous disorder management. By applying a novel capacitive, iontronic sensing technology, a flexible, ultrathin, and highly sensitive pressure sensing array is seamlessly incorporated into compression garments for the monitoring of interface pressure. The linear pressure sensing array assesses pressure distribution along the limb in a real-time manner (up to a scanning rate of 5 kHz), and the measurement data can be processed and displayed on a mobile device locally, as well as transmitted through a Bluetooth communication module to a remote clinical service. The proposed interface pressure measuring system provides real-time interface pressure distribution data and can be utilized for both clinical and self-management of compression therapy, where both treatment efficacy and quality assurance can be ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anthony-Peyton, V. W. Analog Electronics with Op-amps: A Source Book of Practical Circuits. New York: Cambridge University Press, 1996.

    Google Scholar 

  2. Baoqing, N., R. Li, and J. Cao. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 2015. doi:10.1002/adma.201502556.

    Google Scholar 

  3. Becker, F., et al. Measurement of lower leg compression in vivo: recommendations for the performance of measurements of interface pressure and stiffness. Dermatol. Surg. 32:224–233, 2006.

    PubMed  Google Scholar 

  4. Behm, D. G., A. Bambury, F. Cahill, and K. Power. Effect of acute static stretching on force, balance, reaction time, and movement time. Med. Sci. Sports Exerc. 36:1397, 2004.

    Article  PubMed  Google Scholar 

  5. Ben-Shalom, A., D. Weiss, R. Poliakine, L. Greenstein, and I. Arad. Patents US20120116251, 2010.

  6. Bonato, P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 22:18, 2003.

    Article  PubMed  Google Scholar 

  7. Bonato, P. Advances in wearable technology and applications in physical medicine and rehabilitation. J Neuroeng Rehabil 2:2, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brophy-Williams, N., M. W. Driller, S. L. Halson, J. W. Fell, and C. M. Shing. Evaluating the Kikuhime pressure monitor for use with sports compression clothing. Sports Eng. 17:55, 2014.

    Article  Google Scholar 

  9. Di Giovanni, M. Flat and Corrugated Diaphram Design Handbook. Ney York: Marcel Dekker, Inc., 1982.

    Google Scholar 

  10. Digiglio, P., R. Li, W. Wang, and T. Pan. Microflotronic arterial tonometry for continuous wearable non-invasive hemodynamic monitoring. Ann. Biomed. Eng. 42:2278–2288, 2014.

    Article  PubMed  Google Scholar 

  11. Ding, Y., E. Huang, K. S. Lam, and T. Pan. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning. Lab Chip 13:1902, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Etufugh, C. N., and T. J. Phillips. Venous ulcers. Clin. Dermatol. 25:121, 2007.

    Article  PubMed  Google Scholar 

  13. Fensli, R., E. Gunnarson, and T. Gundersen, Presented at the Computer-Based Medical Systems, 2005. 18th IEEE Symposium on Proceedings, 2005 (unpublished).

  14. Fraile, J. A., J. Bajo, J. M. Corchado, and A. Abraham. Applying wearable solutions in dependent environments. IEEE Trans. Inf Technol. Biomed. 14:1459, 2010.

    Article  PubMed  Google Scholar 

  15. Gloviczki, P. Commentary. Comparison of surgery and compression with compression alone in chronic venous ulceration (ESCHAR study): randomised controlled trial. Perspect. Vasc. Surg Endovasc Ther 17:275, 2005.

    PubMed  Google Scholar 

  16. Hoover, G., F. Brewer, and T. Sherwood. In: CASES ’06, edited by CASES. New York: ACM, p. 357, 2006.

  17. Huang, X., et al. Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Funct. Mater. 24:3846, 2014.

    Article  CAS  Google Scholar 

  18. Keplinger, C., et al. Stretchable, transparent, ionic conductors. Science 341:984, 2013.

    Article  CAS  PubMed  Google Scholar 

  19. Lautenschlager, S., and A. Eichmann. Differential diagnosis of leg ulcers. Curr. Probl. Dermatol. 27:259, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Marston, W. A., R. E. Carlin, M. A. Passman, M. A. Farber, and B. A. Keagy. Healing rates and cost efficacy of outpatient compression treatment for leg ulcers associated with venous insufficiency. J. Vasc. Surg. 30:491, 1999.

    Article  CAS  PubMed  Google Scholar 

  21. Nemati, E., M. J. Deen, and T. Mondal. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 50:36, 2012.

    Article  Google Scholar 

  22. Nie, B., R. Li, J. Brandt, and T. Pan. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14:1107, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Nie, B. Q., S. Y. Xing, J. D. Brandt, and T. R. Pan. Droplet-based interfacial capacitive sensing. Lab Chip 12:1110, 2012.

    Article  CAS  PubMed  Google Scholar 

  24. O’Donnell, T. J., et al. Management of venous leg ulcers: clinical practice guidelines of the Society for Vascular Surgery((R)) and the American Venous Forum. J. Vasc. Surg. 60:3S, 2014.

    Article  PubMed  Google Scholar 

  25. Pan, T., and W. Wei. From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications. Ann. Biomed. Eng. 39:600–620, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pantelopoulos, A., and N. G. Bourbakis. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. C 40:1, 2010.

    Article  Google Scholar 

  27. Partsch, H., and G. Mosti. Comparison of three portable instruments to measure compression pressure. Int. Angiol. 29:426, 2010.

    CAS  PubMed  Google Scholar 

  28. Partsch, H., et al. Classification of compression bandages: practical aspects. Dermatol. Surg. 34:600, 2008.

    CAS  PubMed  Google Scholar 

  29. Patel, S., H. Park, P. Bonato, L. Chan, and M. Rodgers. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 9:21, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shirinov, A. V., and W. K. Schomburg. Pressure sensor from a PVDF film. Sens. Actuators, A 142:48, 2008.

    Article  CAS  Google Scholar 

  31. Son, D., et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9:397–404, 2014.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, J., C. Keplinger, G. M. Whitesides, and Z. Suo. Ionic skin. Adv. Mater. 26:7608, 2014.

    Article  CAS  PubMed  Google Scholar 

  33. Timoshenko, S. W. S. Theory of Plates and Shells. New York: McGraw-Hill, 1959.

    Google Scholar 

  34. Vaseghi, S. V. Advanced Digital Signal Processing and Noise Reduction. New York: Wiley, 2008.

    Book  Google Scholar 

  35. Webb, R. C., et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12:938, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wells, P. S., A. A. Lensing, and J. Hirsh. Graduated compression stockings in the prevention of postoperative venous thromboembolism: a meta-analysis. Arch. Intern. Med. 154:67, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Yao, S., and Y. Zhu. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the National Science Foundation (ECCS-0846502 and ECCS-1307831) to TP. RL and BN acknowledge the fellowship support from China Scholarship Council (CSC). Authors would like to thank Xin Yang from Cynoware Electronics Inc. for the assistance on PCB circuit layout and Jiannan Li for the assistance on the micro droplet printing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingrui Pan.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Nie, B., Zhai, C. et al. Telemedical Wearable Sensing Platform for Management of Chronic Venous Disorder. Ann Biomed Eng 44, 2282–2291 (2016). https://doi.org/10.1007/s10439-015-1498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1498-x

Keywords

Navigation