Skip to main content

Advertisement

Log in

Shrinking the Supply Chain for Implantable Coronary Stent Devices

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stenting treatments for the management of disease in the heart, arterial and venous systems, biliary ducts, urethras, ureters, oesophageal tract and prostate have made enormous technical advances since their introduction into clinical use. The progression from metallic to polymer based bio-absorbable stents, coupled with the advances in additive manufacturing techniques, present a unique opportunity to completely re-envision the design, manufacture, and supply chain of stents. This paper looks at current stenting trends and proposes a future where the stent supply chain is condensed from ~150 days to ~20 min. The Cardiologist therefore has the opportunity to become a designer, manufacturer and user with patients receiving custom stents specific to their unique pathology that will be generated, delivered and deployed in the Cath-lab. The paper will outline this potentially revolutionary development and consider the technical challenges that will need to be overcome in order to achieve these ambitious goals. A high level overview of the generating eluting stents in situ program—GENESIS—is outlined including some early experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abizaid, A., and J. R. Costa. New drug-eluting stents an overview on biodegradable and polymer-free next-generation stent systems. Circulation 3:384–393, 2010.

    CAS  PubMed  Google Scholar 

  2. Aktin, T., and R. G. Özdemir. An integrated approach to the one-dimensional cutting stock problem in coronary stent manufacturing. Eur. J. Oper. Res. 196:737–743, 2009.

    Article  Google Scholar 

  3. Alexy, R. D., and D. S. Levi. Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed. Res. Int. 11:2013–2015, 2013.

    Google Scholar 

  4. Bartlett, S. Printing organs on demand. Lancet Respir. Med. 9:684, 2013.

    Article  Google Scholar 

  5. Caves, J. M., and E. L. Chaikof. The evolving impact of microfabrication and nanotechnology on stent design. J. Vasc. Surg. 44:1363–1368, 2006.

    Article  PubMed  Google Scholar 

  6. Colombo, A., G. Stone, A. Kirtane, and D. Kereiakes. Drug-eluting versus bare-metal stents. In: The Medical Roundtable Cardiovascular Edition. FoxP2 Media LLC, 2015.

  7. Dangas, G. D., B. E. Claessen, A. Caixeta, E. A. Sanidas, G. S. Mintz, and R. Mehran. In-stent restenosis in the drug-eluting stent era. J. Am. Coll. Cardiol. 56:1897–1907, 2010.

    Article  PubMed  Google Scholar 

  8. Fahy P., F. Malone, E. McCarthy, P. McCarthy, J. Thornton, P. Brennan, A. O’Hare, S. Looby, S. Sultan, and N. Hynes. An in vitro evaluation of emboli trajectories within a three-dimensional physical model of the circle of willis under cerebral blood flow conditions. Ann. Biomed. Eng. 1–14, 2015

  9. Frame, M., and J. S. Huntley. Rapid prototyping in orthopaedic surgery: a users guide. Sci. World J. 2012:7, 2012.

    Article  Google Scholar 

  10. Garcíaa, H. G., I. J. Amat Santosa, J. A. San Román Calvar. Intrastent coronary dissection assessed with optical coherence tomography. Rev. Esp. Cardiol. 65(6):570, 2012.

  11. Garg, S., and P. W. Serruys. Coronary stents: looking forward. J. Am. Coll. Cardiol. 56:S43–S78, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Gitter, D. M. Innovators and imitators: an analysis of proposed legislation implementing an abbreviated approval pathway for follow-on biologics in the United States. Fla. St. UL Rev. 35:555, 2007.

    Google Scholar 

  13. Harms, J., X. Wang, T. Kim, X. Yang, and A. S. Rathore. Defining process design space for biotech products: case study of Pichia pastoris fermentation. Biotechnol. Prog. 24:655–662, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Hendriks, J. G. E., J. R. van Horn, H. C. van der Mei, and H. J. Busscher. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 25:545–556, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Hermawan, H., D. Dubé, and D. Mantovani. Developments in metallic biodegradable stents. Acta Biomater. 6:1693–1697, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Htay, T., and M. W. Liu. Drug-eluting stent: a review and update. Vasc. Health Risk Manag. 1:263, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kahn, J. K., and G. O. Hartzler. Frequency and causes of failure with contemporary balloon coronary angioplasty and implications for new technologies. Am. J. Cardiol. 66:858–860, 1990.

    Article  CAS  PubMed  Google Scholar 

  18. Khan, W., S. Farah, and A. J. Domb. Drug eluting stents: developments and current status. J. Control. Release 161:703–712, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Kishore, L., and P. Gupta. Vascular imaging: past, present & future. Vascular 26:65, 2013.

    Google Scholar 

  20. Krishnan, S., A. Dawood, R. Richards, J. Henckel, and A. Hart. A review of rapid prototyped surgical guides for patient-specific total knee replacement. J. Bone Joint Surg. Br. 94:1457–1461, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S.-Y., and M.-K. Hong. Stent evaluation with optical coherence tomography. Yonsei Med. J. 54:1075–1083, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Leu, Y. Y., and W. S. Chow. Kinetics of water absorption and thermal properties of poly (lactic acid)/organomontmorillonite/poly (ethylene glycol) nanocomposites. J. Vinyl Addit. Technol. 17:40–47, 2011.

    Article  CAS  Google Scholar 

  23. Mani, G., M. D. Feldman, D. Patel, and C. M. Agrawal. Coronary stents: a materials perspective. Biomaterials 28:1689–1710, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Martinez, A. W., and E. L. Chaikof. Microfabrication and nanotechnology in stent design. Wiley Interdiscip. Rev. 3:256–268, 2011.

    CAS  Google Scholar 

  25. McGinty, S., T. T. Vo, M. Meere, S. McKee, and C. McCormick. Some design considerations for polymer-free drug-eluting stents: a mathematical approach. Acta Biomater. 18:213–225, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Mikkonen, J., I. Uurto, T. Isotalo, A. Kotsar, T. Tammela, M. Talja, J.-P. Salenius, P. Törmälä, and M. Kellomäki. Drug-eluting bioabsorbable stents–An in vitro study. Acta Biomater. 5:2894–2900, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Moore, S. S., and J. Villaumie. A transferable non-destructive method for the quantification of coronary stent coating components using Raman spectroscopy. J. Raman Spectrosc. 46:353–360, 2015.

    Article  CAS  Google Scholar 

  28. Morris, L., F. Stefanov, and T. McGloughlin. Stent graft performance in the treatment of abdominal aortic aneurysms: the influence of compliance and geometry. J. Biomech. 46:383–395, 2013.

    Article  PubMed  Google Scholar 

  29. Nalladaru, Z. Bioabsorbable coronary stents: the new kid on the block. Arab Health Magazine. pp. 16–18, 2012.

  30. Nguyen, T. D., E. Su, F. Lazarow, F. C. Wheatley, A. Chin-Loy, A. Wang, D. Protsenko, G. S. Ahuja, Z. Chen, and B. J. Wong. Constructing 3D models of the pediatric upper airway from long range optical coherence tomography images. In: Proc. SPIE 8926, Photonic Therapeutics and Diagnostics X, 89262L (March 3, 2014). doi:10.1117/12.2052971

  31. Ormiston, J. A., and P. W. Serruys. Bioabsorbable coronary stents. Circulation 2:255–260, 2009.

    CAS  PubMed  Google Scholar 

  32. Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60:691–699, 2013.

    Article  PubMed  Google Scholar 

  33. Poncin, P., and J. Proft. Stent tubing: understanding the desired attributes. In: Proceedings of Materials & Processes for Medical Devices Conference, Anaheim, CA, 8–10 Sept., 2003.

  34. Qi, P., Y. Yang, F. M. Maitz, and N. Huang. Current status of research and application in vascular stents. Chin. Sci. Bull. 58:4362–4370, 2013.

    Article  CAS  Google Scholar 

  35. Raval, A., J. Parikh, and C. Engineer. Mechanism of controlled release kinetics from medical devices. Braz. J. Chem. Eng. 27:211–225, 2010.

    CAS  Google Scholar 

  36. Roguin, A. Stent: the man and word behind the coronary metal prosthesis. Circulation 4:206–209, 2011.

    CAS  PubMed  Google Scholar 

  37. Schubert, C., M. C. van Langeveld, and L. A. Donoso. Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98(2):159–161, 2014. doi:10.1136/bjophthalmol-2013-304446.

  38. Stoeckel, D., C. Bonsignore, and S. Duda. A survey of stent designs. Minim. Invasive Ther. Allied Technol. 11:137–147, 2002.

    Article  Google Scholar 

  39. Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.

    Article  PubMed  Google Scholar 

  40. Thom, T., N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z.-J. Zheng, K. Flegal, C. O’donnell, and S. Kittner. Heart disease and stroke statistics—2006 update a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151, 2006.

    Article  PubMed  Google Scholar 

  41. Tumbleston, J. R., D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, and A. Ermoshkin. Continuous liquid interface production of 3D objects. Science 347:1349–1352, 2015.

    Article  CAS  PubMed  Google Scholar 

  42. Van Belle, E., C. Bauters, E. Hubert, J.-C. Bodart, K. Abolmaali, T. Meurice, E. P. McFadden, J.-M. Lablanche, and M. E. Bertrand. Restenosis rates in diabetic patients A comparison of coronary stenting and balloon angioplasty in native coronary vessels. Circulation 96:1454–1460, 1997.

    Article  PubMed  Google Scholar 

  43. Ventola, C. L. Medical applications for 3D printing: current and projected uses. Pharm. Ther. 39:704, 2014.

    Google Scholar 

  44. Wadhwa, H. S. Stents: Technologies and Global Markets. Massachusetts: BCC, 2015.

    Google Scholar 

  45. Wang, Y., and X. Zhang. Vascular restoration therapy and bioresorbable vascular scaffold. Regen. Biomater. 1:49–55, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wiebe, J., H. M. Nef, and C. W. Hamm. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J. Am. Coll. Cardiol. 64:2541–2551, 2014.

    Article  CAS  PubMed  Google Scholar 

  47. Zopf, D. A., S. J. Hollister, M. E. Nelson, R. G. Ohye, and G. E. Green. Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 368:2043–2045, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers and editors whose feedback was invaluable in the development of this paper. They would also like to thank Donal Ryan from 3dprint@ul.i.e. for the support in the initial experiments and Aidan G. O’Sullivan for the use of his stent design in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean S. Moore.

Additional information

Associate Editor Sean McGinty oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, S.S., O’Sullivan, K.J. & Verdecchia, F. Shrinking the Supply Chain for Implantable Coronary Stent Devices. Ann Biomed Eng 44, 497–507 (2016). https://doi.org/10.1007/s10439-015-1471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1471-8

Keywords

Navigation