Skip to main content
Log in

An improved boundary element method for modelling a self-reacting point absorber wave energy converter

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A numerical model based on a boundary element method (BEM) is developed to predict the performance of two-body self-reacting floating-point absorber (SRFPA) wave energy systems that operate predominantly in heave. The key numerical issues in applying the BEM are systematically discussed. In particular, some improvements and simplifications in the numerical scheme are developed to evaluate the free surface Green’s function, which is a main element of difficulty in the BEM. For a locked SRFPA system, the present method is compared with the existing experiment and the Reynolds-averaged Navier–Stokes (RANS)-based method, where it is shown that the inviscid assumption leads to substantial over-prediction of the heave response. For the unlocked SRFPA model we study in this paper, the additional viscous damping primarily induced by flow separation and vortex shedding, is modelled as a quadratic drag force, which is proportional to the square of body velocity. The inclusion of viscous drag in present method significantly improves the prediction of the heave responses and the power absorption performance of the SRFPA system, obtaining results excellent agreement with experimental data and the RANS simulation results over a broad range of incident wave periods, except near resonance in larger wave height scenarios. It is found that the wave overtopping and the re-entering impact of out-of-water floating body are observed more frequently in larger waves, where these non-linear effects are the dominant damping sources and could significantly reduce the power output and the motion responses of the SRFPA system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Salter, S.H.: Wave power. Nature 249, 720–724 (1974)

    Article  Google Scholar 

  2. Ocean Power Technologies (2011) May [Online]. http://www.oceanpowertechnologies.com

  3. Weber, J., Mouwen, F., Parish, A., et al.: Wavebob-research & development network and tools in the context of systems engineering. In: Proceedings of the Eighth European Wave and Tidal Energy Conference (2009)

  4. Salter, S.H., Lin, C.P.: The sloped IPS wave energy converter. In: Proceedings of the 2nd European Wave Energy Conference, pp. 337–344 (1995)

  5. Payne, G.S., Taylor, J.R.M., Bruce, T., et al.: Assessment of boundary-element method for modelling a free floating sloped wave energy device. Part 1. Numerical modelling. Ocean Eng. 35, 333–341 (2008)

    Article  Google Scholar 

  6. Payne, G.S., Taylor, J.R.M., Bruce, T., et al.: Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 2. Experimental validation. Ocean Eng. 35, 342–357 (2008)

    Article  Google Scholar 

  7. Xu, Y., Dong, W.C.: Numerical study on wave loads and motions of two ships advancing in waves by using 3D translating–pulsating source. Acta. Mech. Sin. 29, 494–502 (2013)

    Article  Google Scholar 

  8. Zhou, B.Z., Ning, D.Z., Teng, B., et al.: Fully nonlinear modeling of radiated waves generated by floating flared structures. Acta. Mech. Sin. 30, 667–680 (2014)

    Article  MathSciNet  Google Scholar 

  9. Beatty, S.J., Hall, M., Buckham, B.J., et al.: Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Eng. 104, 370–386 (2015)

    Article  Google Scholar 

  10. Rahmati, M.T., Aggidis, G.A.: Numerical and experimental analysis of the power output of a point absorber wave energy converter in irregular waves. Ocean Eng. 111, 483–492 (2016)

    Article  Google Scholar 

  11. Sergiienko, N.Y., Cazzolato, B.S., Ding, B., et al.: Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renew. Energy 108, 425–437 (2017)

    Article  Google Scholar 

  12. Kurniawan, A., Chaplin, J.R., Greaves, D.M., et al.: Wave energy absorption by a floating air bag. J. Fluid Mech. 812, 294–320 (2016)

    Article  Google Scholar 

  13. Li, Y., Yu, Y.H.: A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew. Sustain. Energy Rev. 16, 4352–4364 (2012)

    Article  Google Scholar 

  14. Bjarte-Larsson, T., Falnes, J.: Laboratory experiment on heaving body with hydraulic power take-off and latching control. Ocean Eng. 33, 847–877 (2006)

    Article  Google Scholar 

  15. Piscopo, V., Benassai, G., Cozzolino, L., et al.: A new optimization procedure of heaving point absorber hydrodynamic performances. Ocean Eng. 116, 242–259 (2016)

    Article  Google Scholar 

  16. Ding, B., Cazzolato, B.S., Arjomandi, M., et al.: Sea-state based maximum power point tracking damping control of a fully submerged oscillating buoy. Ocean Eng. 126, 299–312 (2016)

    Article  Google Scholar 

  17. Ding, B., Sergiienko, N., Bleckly, B., et al.: Power-take-off control in a scaled experiment of a point absorber wave energy converter. In: Proceeding of the European Wave and Tidal Energy Conference (2017)

  18. Sergiienko, N., Cazzolato, B., Hardy, P., et al.: Internal-model-based velocity tracking control of a submerged three-tether wave energy converter. In: Proceeding of the European Wave and Tidal Energy Conference (2017)

  19. Beatty, S., Ferri, F., Bocking, B., et al.: Power take-off simulation for scale model testing of wave energy converters. Energies 10, 973 (2017)

    Article  Google Scholar 

  20. Sinha, A., Karmakar, D., Soares, C.G., et al.: Performance of optimally tuned arrays of heaving point absorbers. Renew. Energy 92, 517–531 (2016)

    Article  Google Scholar 

  21. WAMIT Inc.: Version7.0 (2012). http://www.wamit.com

  22. Hulme, A.: The heave added-mass and damping coefficients of a submerged torus. J. Fluid Mech. 155, 511–530 (1985)

    Article  Google Scholar 

  23. Newman, J.N.: Double-precision evaluation of the oscillatory source potential. J. Ship Res. 28, 151–154 (1984)

    Google Scholar 

  24. Newman, J.N.: Algorithms for the free-surface Green function. J. Eng. Math. 19, 57–67 (1985)

    Article  Google Scholar 

  25. Newman, J.N.: The approximation of free-surface green functions. In: Retirement Meeting for Professor F.J. Ursell, Manchester, UK, 29–30 (1990)

  26. Yao, X.L., Sun, S.L., Wang, S.P., et al.: The research on the highly efficient calculation method of 3-D frequency-domain Green function. J. Mar. Sci. Appl. 8, 196–203 (2009)

    Article  Google Scholar 

  27. Chen, X.B.: Hydrodynamics in offshore and naval applications part 1. In: Proceedings of the 6th International Conference on Hydrodynamics (2004)

  28. Yu, Y.H., Li, Y.: Reynold-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Comput. Fluids 73, 104–114 (2013)

    Article  Google Scholar 

  29. Falnes, J.: Wave-energy conversion through relative motion between two single-mode oscillating bodies. J. Offshore Mech. Arct. Eng. 121, 32–38 (1999)

    Article  Google Scholar 

  30. Wehausen, J.V., Laitone, E.V.: Surface Waves. Springer, Berlin (1960)

    Chapter  Google Scholar 

  31. Endo, H.: Numerical evaluation of principal value integral by Gauss–Laguerre quadrature. AIAA J. 21, 149–151 (1983)

    Article  MathSciNet  Google Scholar 

  32. Li, L.: Numerical seakeeping predictions of shallow water effect on two ship interactions in waves. [Ph.D. Thesis], Dalhousie University, Canada (2001)

  33. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  34. Liu, R.M., Ren, H.L., Li, H.: An improved Gauss–Laguerre method for finite water depth green function and its derivatives. J. Ship Mech. 12, 188–196 (2008) (in Chinese)

  35. John, F.: On the motion of floating bodies II. Commun. Pure Appl. Math. 3, 45–101 (1950)

    Article  Google Scholar 

  36. Havelock, T.: Waves due to a floating sphere making periodic heaving oscillations. Proc. R. Soc. A Math. Phys. Eng. Sci. 231, 1–7 (1955)

    Article  MathSciNet  Google Scholar 

  37. Dai, Y.S., Duan, W.Y.: Potential Flow Theory of Ship Motions in Waves. National Defence and Industry Publishing House, Beijing (2008) (in Chinese)

  38. Hulme, A.: The wave forces acting on a floating hemisphere undergoing forced periodic oscillations. J. Fluid Mech. 121, 443–463 (1982)

    Article  MathSciNet  Google Scholar 

  39. Chen, X.B., Diebold, L., Doutreleau, Y.: New Green-function method to predict wave-induced ship motions and loads. In: Proceedings of the Twenty-Third Symposium on Naval Hydrodynamics (2000)

  40. Li, Y., Yu, Y.H., Epler, J., et al.: Experimental investigation of the power generation performance of floating-point absorber wave energy systems. In: 27th International Workshop on Water Waves and Floating Bodies, Copenhagen, Denmark (2012)

  41. Eidsmoen, H.: Simulation of a slack-moored heaving-buoy wave-energy converter with phase control. Norwegian University of Science and Technology, Trondheim, Norway, Technical Report (1996)

  42. Tao, L., Cai, S.: Heave motion suppression of a Spar with a heave plate. Ocean Eng. 31, 669–692 (2004)

    Article  Google Scholar 

  43. Graham, J.M.R.: The forces on sharp-edged cylinder in an oscillatory flow at low Keulegan–Carpenter numbers. J. Fluid Mech. 97, 331–346 (1980)

    Article  Google Scholar 

  44. Evans, D.: A theory for wave-power absorption by oscillating bodies. J. Fluid Mech. 77, 1–25 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the National Natural Science Foundation of China (Grants 51479114, 51761135012) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Appendix

Appendix

In the present BEM, all body surface boundaries are subdivided into a number of curved surfaces, which are approximated by spatial quadrilateral panels or triangular panels. As seen in Fig. 4, the centroid \(P_c(x_c,y_c,z_c)\) of each panel element is represented as

$$\begin{aligned} x_c=\frac{\sum \nolimits _{k=1}^nx_k}{n},\quad y_c=\frac{\sum \nolimits _{k=1}^ny_k}{n},\quad z_c=\frac{\sum \nolimits _{k=1}^nz_k}{n}, \end{aligned}$$
(A1)

where \(A_k(x_k,y_k,z_k)\) represents the k-th node of the panel element, especially \(n = 3\) for triangular panels, \(n = 4\) for quadrilateral panels.

Without losing generality, assuming the unit normal vector \({{\varvec{n}}}\) of the panel element directed from the fluid into bodies, for triangular panels, it can be evaluated by

$$\begin{aligned} {{\varvec{n}}}=\frac{{{\varvec{A}}}_1{{\varvec{A}}}_2\times {{\varvec{A}}}_2{{\varvec{A}}}_3}{\vert {{\varvec{A}}}_1{{\varvec{A}}}_2\times {{\varvec{A}}}_2{{\varvec{A}}}_3\vert }, \end{aligned}$$
(A2)

for quadrilateral panels,

$$\begin{aligned} {{\varvec{n}}}=\frac{{{\varvec{A}}}_1{{\varvec{A}}}_3\times {{\varvec{A}}}_2{{\varvec{A}}}_4}{\vert {{\varvec{A}}}_1{{\varvec{A}}}_3\times {{\varvec{A}}}_2{{\varvec{A}}}_4\vert }. \end{aligned}$$
(A3)

In general, the four nodes of a spatial quadrilateral panel are probably not located on the same plane, which makes it useless in the present BEM. One treatment is applied here: the whole panel element \(A_1A_2A_3A_4\) is projected to a plane (perpendicular to the normal vector \({{\varvec{n}}}\) and contains the centroid \(P_c\)), then it is approximately replaced by the projective element \(A_1'A_2'A_3'A_4'\).

For convenience, the local coordinate system \(P_c-\alpha \beta \gamma \) on each panel element is established to evaluate the influence coefficient matrices. On an arbitrary panel element \(\triangle S_j\), the centroid \(P_c(x_c,y_c,z_c)\) is specified as the origin and let \(\varvec{\tau }_\alpha \), \(\varvec{\tau }_\beta \), \(\varvec{\tau }_\gamma \) signify the basis vectors of \(P_c-\alpha \beta \gamma \). We can choose an arbitrary node \(A_k(x_k,y_k,z_k)\) of the element to determine the basis vector \(\varvec{\tau }_\alpha \)

$$\begin{aligned} \varvec{\tau }_\alpha =\frac{{{\varvec{P}}}_c{{\varvec{A}}}_k}{\vert {{\varvec{P}}}_c{{\varvec{A}}}_k\vert }, \end{aligned}$$
(A4)

and

$$\begin{aligned} \varvec{\tau }_\gamma ={{\varvec{n}}},\quad \varvec{\tau }_\beta =\varvec{\tau }_\gamma \times \varvec{\tau }_\alpha . \end{aligned}$$
(A5)

Let \(\varvec{\tau }_\alpha \), \(\varvec{\tau }_\beta \), \(\varvec{\tau }_\gamma \) be column vectors, thus an orthogonal coordinate-transformation matrix can be obtained

$$\begin{aligned} {{\varvec{C}}}_t=(\varvec{\tau }_\alpha , \varvec{\tau }_\beta , \varvec{\tau }_\gamma )^\mathrm{T}, \end{aligned}$$
(A6)

then the transformation relation between the coordinates (xyz) in \(O-xyz\) and \((\alpha ,\beta ,\gamma )\) in \(P_c-\alpha \beta \gamma \) is represented as

$$\begin{aligned} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = {{\varvec{C}}}_t\begin{pmatrix} x-x_c \\ y-y_c \\ z-z_c \end{pmatrix},\qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = {{\varvec{C}}}_t^\mathrm{T}\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} + \begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix}, \end{aligned}$$
(A7)

On the element \(\triangle S_j\), a bilinear transformation between the coordinates \((\alpha ,\beta )\) in the local system \(P_c-\alpha \beta \gamma \) and (uv) on the standard square \(E^s_j\) is used here

$$\begin{aligned} \alpha (u,v)&={\bar{\alpha }}+a_{\alpha }u+b_{\alpha }v+c_{\alpha }uv, \end{aligned}$$
(A8)
$$\begin{aligned} \beta (u,v)&={\bar{\beta }}+a_{\beta }u+b_{\beta }v+c_{\beta }uv, \end{aligned}$$
(A9)

where

$$\begin{aligned}&{\bar{\alpha }}=\frac{1}{4}\sum \limits _{k=1}^4\alpha _k,\quad a_{\alpha }={\bar{\alpha }}-\frac{1}{2}(\alpha _2+\alpha _3), \\&b_{\alpha }={\bar{\alpha }}-\frac{1}{2}(\alpha _3+\alpha _4),\quad c_{\alpha }={\bar{\alpha }}-\frac{1}{2}(\alpha _2+\alpha _4), \end{aligned}$$
(A10)
$$\begin{aligned}&{\bar{\beta }}=\frac{1}{4}\sum \limits _{k=1}^4\beta _k,\quad a_{\beta }={\bar{\beta }}-\frac{1}{2}(\beta _2+\beta _3), \\&b_{\beta }={\bar{\beta }}-\frac{1}{2}(\beta _3+\beta _4),\quad c_{\beta }={\bar{\beta }}-\frac{1}{2}(\beta _2+\beta _4), \end{aligned}$$
(A11)

where \((\alpha _k,\beta _k)\) represents the local coordinates of the k-th node on the element \(\triangle S_j\). The Jacobian determinant associated with the transformation of the element \(\triangle S_j\) to its image \(E^s_j\) is evaluated by

$$\begin{aligned}&J(u,v) = \left| \frac{D(\alpha ,\beta )}{D(u,v)} \right| = a_\alpha b_\beta -b_\alpha a_\beta \\&\qquad \quad \qquad +\,(a_\alpha c_\beta -c_\alpha a_\beta )u+(c_\alpha b_\beta -b_\alpha c_\beta )v, \end{aligned}$$
(A12)

For triangular panel elements, the transformation Eqs. (A8) and (A9) are no longer applicable. Without losing generality, assuming the nodes \(A_3\) and \(A_4\) of the element coinciding, we apply a linear transformation

$$\begin{aligned} \alpha (u,v)&={\bar{\alpha }}+a_{\alpha }u+b_{\alpha }v, \end{aligned}$$
(A13)
$$\begin{aligned} \beta (u,v)&={\bar{\beta }}+a_{\beta }u+b_{\beta }v, \end{aligned}$$
(A14)

where

$$\begin{aligned} {\bar{\alpha }}&=\frac{1}{2}(\alpha _1+\alpha _3),\quad a_{\alpha }=\frac{1}{2}(\alpha _1-\alpha _2),\quad b_{\alpha }=\frac{1}{2}(\alpha _2-\alpha _3), \end{aligned}$$
(A15)
$$\begin{aligned} {\bar{\beta }}&=\frac{1}{2}(\beta _1+\beta _3),\quad a_{\beta }=\frac{1}{2}(\beta _1-\beta _2),\quad b_{\beta }=\frac{1}{2}(\beta _2-\beta _3), \end{aligned}$$
(A16)

and the Jacobian determinant becomes

$$\begin{aligned} J(u,v)=\left| \frac{D(\alpha ,\beta )}{D(u,v)}\right| =a_\alpha b_\beta -b_\alpha a_\beta . \end{aligned}$$
(A17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, QL., Li, Y. & Lin, ZL. An improved boundary element method for modelling a self-reacting point absorber wave energy converter. Acta Mech. Sin. 34, 1015–1034 (2018). https://doi.org/10.1007/s10409-018-0792-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0792-x

Keywords

Navigation