Skip to main content
Log in

Analytical method for the attitude stability of partially liquid filled spacecraft with flexible appendage

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the attitude stability of liquid-filled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum, and the flexible appendage is approached by a linear shearing beam. Nonlinear dynamic equations of the coupled system are derived from the Hamiltonian. The stability of the coupled system was analyzed by using the energy-Casimir method, and the nonlinear stability theorem of the coupled spacecraft system was also obtained. Through numerical computation, the correctness of the proposed theorem is verified and the boundary curves of the stable region are presented. The increase of the angular velocity and flexible attachment length will weaken the attitude stability, and the change of the filled ratio of liquid fuel tank has a different influence on the stability of the coupled spacecraft, depending on the different conditions. The attitude stability analysis of the coupled spacecraft system in this context is useful for selecting appropriate parameters in the complex spacecraft design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miao, N., Wang, T.S., Li, J.F.: Research progress of liquid sloshing in microgravity. Mech. Eng. 38, 229–236 (2016). doi:10.6052/1000-0879-15-185

    Google Scholar 

  2. Kusnierkiewicz, D.Y., Hersman, C.B., Fountain, G.H., et al.: System engineering challenges on the new horizons project. In: 57th International Astronautical Congress, Valencia (2008) doi:10.2514/6.IAC-06-D1.5.03

  3. Lu, J., Wang, S.M., Wang, T.S.: Coupling dynamic analysis of a liquid-filled spherical container subject to arbitrary excitation. Acta Mech. Sin. 28, 1154–1162 (2012). doi:10.1007/s10409-012-0119-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, W.J., Yue, B.Z., Huang, H.: Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages. Acta Mech. Sin. 32, 144–155 (2015). doi:10.1007/s10409-015-0497-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, H.F.: Stability boundaries of liquid-propelled space vehicles with sloshing. AIAA J. 1, 1583–1589 (1963). doi:10.2514/3.1861

    Article  MATH  Google Scholar 

  6. Kana, D.D., Chu, W.: Dynamic stability of cylindrical propellant tanks. J. Spacecr. Rocket. 7, 587–593 (1970). doi:10.2514/3.29995

    Article  Google Scholar 

  7. Veldman, A.E.P., Gerrits, J., Luppes, R., et al.: The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys. 224, 82–99 (2007). doi:10.1016/j.jcp.2006.12.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Agrawal, B.N.: Dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. J. Guid. Control Dyn. 16, 636–640 (1993). doi:10.2514/3.21061

    Article  Google Scholar 

  9. Bao, G.W., Pascal, M.: Stability of a spinning liquid-filled spacecraft. Arch. Appl. Mech. 67, 407–421 (1997). doi:10.1007/s004190050127

    Article  MATH  Google Scholar 

  10. Agrawal, B.N.: Stability of spinning spacecraft with partially liquid-filled tanks. J. Guid. Control Dyn. 5, 344–350 (1982). doi:10.2514/3.56181

    Article  Google Scholar 

  11. Li, J.F., Wang, Z.L.: Attitude dynamics of a liquid-filled spacecraft with a manipulator. Commun. Nonlinear Sci. 2, 26–30 (1997). doi:10.1016/S1007-5704(97)90033-2

    Article  MATH  Google Scholar 

  12. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, New York (1998)

    Google Scholar 

  13. Arnold, V.I.: An a priori estimate in the theory of hydrodynamic stability. Izv. Vyssh. Uchebn. Zaved. Mat. 5, 3–5 (1966) (in Russian)

  14. Krishnaprasad, P.S., Marsden, J.E.: Hamiltonian structures and stability for rigid bodies with flexible attachments. Arch. Ration. Mech. Anal. 98, 71–93 (1987). doi:10.1007/BF00279963

    Article  MathSciNet  MATH  Google Scholar 

  15. Posbergh, T.A., Krishnaprasad, P.S., Marsden, J.E.: Stability analysis of a rigid body with a flexible attachment using the energy-Casimir method. Commun. Contemp. Math. 68, 253–273 (1987). doi:10.1090/conm/068/924816

    Article  MathSciNet  MATH  Google Scholar 

  16. Bloch, A.M., Marsden, J.E.: Stabilization of rigid body dynamics by the energy-Casimir method. Syst. Control. Lett. 14, 341–346 (1990). doi:10.1016/0167-6911(90)90055-Y

    Article  MathSciNet  MATH  Google Scholar 

  17. Yue, B.Z., Salman, A., Song, X.J.: Casimir method for attitude stability analysis of liquid-filled spacecraft. Sci. Sin. Ser. A 43, 401–406 (2013). doi:10.1016/0167-6911(90)90055-Y

    Google Scholar 

  18. Salman, A., Yue, B.Z.: Bifurcation and stability analysis of the Hamiltonian Casimir model of liquid sloshing. Chin. Phys. Lett. 29, 060501 (2012). doi:10.1088/0256-307X/29/6/060501

    Article  Google Scholar 

  19. Hesham, S., Gang, T.: Zero dynamics analysis for spacecraft with fuel slosh. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu (2008) doi:10.2514/6.2008-6455

  20. Yue, B.Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49, 2090–2099 (2011). doi:10.2514/1.J050144

    Article  MATH  Google Scholar 

  21. Ibrahim, R.A.: Liquid Sloshing Dynamics Theory and Applications, 1st edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  22. Holm, D.D., Marsden, J.E., Ratiu, T., et al.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 85, 1–116 (1985). doi:10.1016/0370-1573(85)90028-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Dodge, F.T.: The new dynamic behavior of liquids in moving containers. Southwest Research Inst., San Antonio, NASA SP-106. (2000)

  24. Kana, D.D.: Validated spherical pendulum model for rotary liquid slosh. J. Spacecr. Rocket. 26, 188–195 (1989). doi:10.2514/3.26052

    Article  Google Scholar 

  25. Dai, L.M., Wang, X.J.: Effects of viscosity and varying gravity on liquid sloshing in a carrier subjected to external excitations. Int. J. Dyn. Control. 2, 521–532 (2014). doi:10.1007/s40435-014-0072-y

    Article  Google Scholar 

  26. Farid, M., Gendelman, O.V.: Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel. J. Sound. Vib. 379, 191–212 (2016). doi:10.1016/j.jsv.2016.05.046

  27. Srinivasacharya, D., Prasad, M.K.: Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mech. Sin. 28, 653–658 (2012). doi:10.1007/s10409-012-0057-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grants 11472041, 11532002) and the Doctoral Fund of Ministry of Education of China (Grant 20131101110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozeng Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Yue, B. Analytical method for the attitude stability of partially liquid filled spacecraft with flexible appendage. Acta Mech. Sin. 33, 208–218 (2017). https://doi.org/10.1007/s10409-016-0616-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0616-9

Keywords

Navigation