Skip to main content
Log in

Hydrodynamics maneuver of a single helical flagellum swimming robot at low-Reynolds condition

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Helical swimming robots with a capable propulsion system at low-Reynolds numbers have been proposed for many applications. Although linear propulsion characteristics of swimming robots with a single helical flagellum have been extensively studied, the characteristics of maneuverability have not been completely investigated yet. This study presents a new method for the maneuverability of the helical swimming robot with a single helical flagellum. This mechanism is based on the change in the angle between the helical and body axes. This study shows that a change in the aforementioned angle can enable the swimming robot to have turning maneuvers in clockwise or counterclockwise directions. Moreover, the swimming robot will move in a straight line if the helical and body axes are parallel. To investigate this new method and predict the robot’s behavior at various inclination angles, a hydrodynamics model is used. To validate the hydrodynamics model, an experimental prototype of a macro-size swimming robot with specific inclination angles is fabricated. The results indicate that the helical swimming robot swims on circular trajectories through specific inclination angles between the helical flagellum and the body axis. Moreover, the radius of curvature decreases by increasing the inclination angle. Results of the validated hydrodynamics model indicate that the turning velocity has approximately a constant value at different inclination angles depending on the rotational frequency and geometrical parameters of the swimming robot. Finally, the effects of geometrical parameters of the body and the helical flagellum on the radius of curvature and turning velocity are investigated through the proposed hydrodynamics model. The verified results indicate that the hydrodynamics model provides a viable alternative model to predict the behavior of a helical swimming robot at various inclination angles within a range of design variables. This new method can be introduced as a mechanism for maneuverability of the helical swimming robots with a single helical flagellum and will be able to control the parameters in this type of swimmers for the implementation of predefined missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

d body :

Cylindrical body diameter (mm)

L body :

Cylindrical body length (mm)

2b :

Helical tail diameter (mm)

2h helix :

Helical wave amplitude (mm)

L tail :

Helical tail’s length (mm)

L total :

Overall length of swimmer robot (body length + helical tail) (mm)

β :

Pitch angle (°)

α :

Inclination angle (°)

λ :

Helical wave length (mm)

n :

Number of wavelengths (−)

W :

Total weight (g)

D motor :

DC-motor diameter (mm)

L motor :

DC-motor length (mm)

V motor :

Voltage of motor (V)

volbattery :

Volume of battery (m3)

V battery :

Voltage of battery (V)

ρ :

Density of test fluid (Kg/m3)

v :

Kinematic viscosity (cSt)

f :

Spinal propulsive frequency (Hz)

G :

The center of mass \(G=\left({x}_{g},{y}_{g},{z}_{g}\right)\) (mm)

B :

The center of buoyancy \(B=\left({x}_{B},{y}_{B},{z}_{B}\right)\)(mm)

\({\overrightarrow{F}}_{\rm helix}\) :

Propulsive force in x-direction

\({\overrightarrow{M}}_{\rm helix}\) :

Torque resulting from fluid reaction on the helical tail

\({\overrightarrow{F}}_{\rm body}, {\overrightarrow{M}}_{\rm body}\) :

Viscous drag and torque acting on the body

\({\overrightarrow{F}}_{\rm e}, {\overrightarrow{M}}_{\rm e}\) :

External forces and torques that affect the swimmer

\({df}_{n}, {df}_{t}\) :

Hydrodynamic forces acting on a cylindrical element of local length

\({ \xi }_{n}, { \xi }_{t}\) :

Local drag coefficient for motion normal and tangential to local length

\({ \upsilon }_{n}, { \upsilon }_{t}\) :

Components of local normal and tangential to local length (mm/s)

\({G}_{body}\) :

The resistive matrix for the body

\({G}_{helix}\) :

The resistive matrix for the helical flagella

\(\varOmega\) :

Angular velocity of the swimmer robot in inertial coordinates \({\Omega }=\left(\dot{{\theta }},\dot{{\phi }},\dot{{\Psi }}\right)\) (rad/s)

\(R\) :

Radius of curvature (mm)

\(U\) :

Planer velocity of swimmer robot \((\text{mm/s})\)

\(v\) :

Velocity of the swimmer robot in body-fixed coordinates \(v=\left({v}_{x},{v}_{y},{v}_{z}\right)\) \((\text{mm/s})\)

V:

Velocity of the swimmer robot in inertial coordinates \(V=\left({V}_{x},{V}_{y},{V}_{z}\right)\) \((\text{mm/s})\)

Ω:

Angular velocity of the swimmer robot in body-fixed coordinates \(\varOmega =\left({\varOmega }_{x},{\varOmega }_{y},{\varOmega }_{z}\right)\)(\(\text{rad/s}\))

References

  • Batchelor GK (1970), Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech 44(3):419

    Article  MathSciNet  Google Scholar 

  • Behkam B, Sitti M (2006) Design methodology for biomimetic propulsion of miniatur swimming robot. Trans ASME J Dyn Sys Meas Control 128:36–43

    Article  Google Scholar 

  • Berg H (2003) The rotary motor of bacterial flagella. Ann Rev Biochem 72:19–54

    Article  Google Scholar 

  • Brennen C, Winet H (1977) Fluid mechanics of propulsion by cilia and flagella. Annu Rev Fluid Mech 9:339–398

    Article  Google Scholar 

  • Chen B, Jiang S, Liu Y, Yang P, Chen S (2010) Research on the kinematic properties of a sperm-like swimming micro robot. J Bionic Eng 7:S123–S129

    Article  Google Scholar 

  • Chwang AT, Wu TY (1971) A note on the helical movement of micro-organisms. Proc R Soc Lond B 178:327–346

    Article  Google Scholar 

  • Darnton NC, Turner L, Rojevsky S, Berg HC (2007) On torque and tumbling in swimming Escherichia coli. J Bacteriol 189:1756–1764

    Article  Google Scholar 

  • Edd J, Payen S, Stoller M, Rubinsky B, Sitti M (2003) Biomimetic propulsion mechanism for a swimming surgical micro-robot. In: Proc.IEEE/RSJ Int. Conf. Intell. Rob. Syst., Las Vegas, NV, USA, pp 2583–2588

  • Elgeti J, Winkler RG, Gompper G (2015) Physics of microswimmers-single particle motion and collective behavior: review. Rep Prog Phys 78:056601

    Article  MathSciNet  Google Scholar 

  • Feng J, Cho SK (2014) Mini and micro propulsion for medical swimmers. Micromachines 5:97–113. https://doi.org/10.3390/mi5010097

    Article  Google Scholar 

  • Garcia J, Torre DL, Bloomfield VA (1977) Hydrodynamic theory of swimming of flagellated microorganism. Biophys J 20:49

    Article  Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32:802

    Google Scholar 

  • Ha N, Goo N, Yoon H (2011) Development of a propulsion system for a biomimetic thruster. Chinese Sci Bull 56:432–438

    Article  Google Scholar 

  • Johnson RE, Brokaw CJ (1979) Flagellar hydrodynamics a comparison between resistive force theory and Slender body theory. Biophys Soc 25:113–127

    Google Scholar 

  • Keller J, Rubinow S (1976) Swimming of flagellated microorganisms. Biophys J 16:151

    Article  Google Scholar 

  • Lagua E (2016) Bacterial hydrodynamics. Annu Rev Fluid Mech 48:105–130

    Article  MathSciNet  Google Scholar 

  • Lighthill J, Lighthill M (1975) Mathematical biofluid dynamics. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Liou W, Yang Y (2015) Numerical study of low-Reynolds number flow over rotating rigid helix: an investigation of the unsteady hydrodynamic force. Fluid Dyn Res 47:045506 (IOP publication)

    Article  MathSciNet  Google Scholar 

  • McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351

    Article  Google Scholar 

  • Nelson BJ, Kaliakatsos I, Abbott JJ (2010) Micro robots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  • Nourmohammadi H, Keighobadi J, Bahrami M (2016) Design, dynamic modelling and control of a bio-inspired helical swimming microrobot with three-dimensional manoeuvring. Trans Inst Meas Control (SAGE) 39(Issue 7):1036–1046

    Google Scholar 

  • Pak Sh, Lauga E (2014) Theoretical models in low-Reynolds-number locomotion. In: Duprat C, Stone HA (eds) Low-Reynolds-number flows: fluid-structure interactions. Soft Matter Series. Royal Society of Chemistry

  • Peyer KE, Mahoney AW, Zhang LJ, Abbott BJ, Nelson (2012) Bacteria-inspired microrobots. Microbiorobotics. https://doi.org/10.1016/B978-1-4557-7891-1.00007-4 (Elsevier Inc)

    Article  Google Scholar 

  • Purcell EM (1997) The efficiency of propulsion by a rotating flagellum. Natl Acad Sci USA (PNAS) 94:11307–11311

    Article  Google Scholar 

  • Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Philosoph Trans R Soc Lond 174:935–982

    Article  Google Scholar 

  • Sitti M (2007) Microscale and nanoscale robotics systems [grand challenges of robotics. IEEE Robot Autom Mag 14(1):53–60

    Article  Google Scholar 

  • Tabak AF, Yesilyurt S (2013) Improved Kinematic models for two-link helical micro/nano-swimmers. IEEE Transact Robot 30:14–25

    Article  Google Scholar 

  • Taute KM, Gude S, Tans SJ, Shimizu TS (2015) High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nature Commun 6:8776

    Article  Google Scholar 

  • Temel FZ, Yesilyurt S (2013) Simulation-based analysis microrobots swimming at the center and near the wall of circular minichannels. Microfluid Nanofluid 14(1–2):287–298

    Article  Google Scholar 

  • Tottori S, Zhang L, Qiu F, Krawczyk K, Obregón Al, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24:811–816

    Article  Google Scholar 

  • Xie L, Altindal T, Chattopadhyay S, Wu X (2011) Bacterial flagellum as a propeller and as a rudder for efficient chemo taxis. PNAS 108(6):2246–2251

    Article  Google Scholar 

  • Xu T, Hwang G, Andreff N, R´egnier S (2015) Influence of geometry on swimming performance of helical Swimmers using DoE, Springer. J Microbiorobotic 31(1):117–127

    Google Scholar 

  • Ye Z, R´egnier St, Sitti M (2013) Rotating magnetic miniature swimming robots with multiple flexible flagella. IEEE Trans Rovotics. http://www.rowland.harvard.edu/labs/bacteria/movies/showmovie.php?mov=fluo_curly1[22]

  • Zhang L, Peyer K, Nelson BJ (2010) Artificial bacterial flagella for micromanipulation. Lab Chip 10(17):2203–2215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sayyaadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Hydrodynamics parameters

In this appendix, we present the value of the hydrodynamics parameters of the helical flagellum and body, which are represented by \({H}_{ij}^{\alpha \beta }\) and\({B}_{ij}^{\alpha \beta }\), respectively:

$$H_{{xx}}^{{FU}}=H_{{yy}}^{{FU}}={b_1},\;\;~H_{{xx}}^{{F\Omega }}=H_{{yy}}^{{F\Omega }}={b_2},$$
(18a)
$$~B_{{xx}}^{{FU}}={a_{1x}},~~~B_{{yy}}^{{FU}}=~{a_{1y}},$$
(18b)
$$~B_{{xx}}^{{M\Omega }}=B_{{yy}}^{{M\Omega }}=~B_{{zz}}^{{M\Omega }}={a_2},$$
(18c)
$$H_{{xx}}^{{MU}}=H_{{yy}}^{{MU}}={c_1},\;\;~H_{{xx}}^{{M\Omega }}=~H_{{yy}}^{{M\Omega }}={c_2}~,$$
(18d)
$$H_{{zy}}^{{MU}}={b_1} \cdot ~P{G_x},\;\;~H_{{zy}}^{{M\Omega }}={b_2} \cdot ~P{G_x}~,$$
(18e)
$${a_1}=\left( {{a_{1x}}{{\sin }^2}\alpha +{a_{1y}}{{\cos }^2}\alpha } \right),$$
(19a)
$${a_{1x}}=\frac{{16\pi \mu ({L_{{\text{body}}}}/2){e^3}}}{{\left[ {\left( {1+{e^2}} \right)E - 2e} \right]}}~,~\;\;{a_{1y}}=\frac{{32\pi \mu ({L_{{\text{body}}}}/2){e^3}}}{{\left[ {\left( {3{e^2} - 1} \right)E+2e} \right]}},$$
(19b)
$$E=Ln\frac{{1+e}}{{1 - e}},$$
(19c)
$$e=\sqrt {{{({L_{{\text{body}}}}/2)}^2} - {{({D_{{\text{body}}}}/2)}^2}} /({L_{{\text{body}}}}/2),$$
(19d)
$${a_2}=\left( {({a_{2x}}+{{(P{G_x})}^2} \cdot {a_{1x}}){\text{si}}{{\text{n}}^2}\alpha ~~~+\;({a_{2y}} \cdot {\text{co}}{{\text{s}}^2}\alpha )} \right),$$
(19e)
$${a_{2x}}=\frac{{32\pi \mu ({L_{{\text{body}}}}/2){{({D_{{\text{body}}}}/2)}^2}{e^3}}}{{3\left[ {2e - \left( {1 - {e^2}} \right)E} \right]}},$$
(19f)
$${a_{2y}}=\frac{{32\pi \mu ({L_{{\text{body}}}}/2){{({D_{{\text{body}}}}/2)}^2}{e^3}\left( {2 - {e^2}} \right)}}{{\left( {3({e^2} - 1} \right)\left[ {\left( {1+{e^2}} \right)E - 2e} \right]}}~,$$
(19g)
$$~{b_2}={h_{{\text{helix}}}}n\lambda ~\left( {{\xi _n} - {\xi _t}} \right){\text{sin}}\beta ,$$
(20a)
$${b_1}=n\lambda ~{\text{cos}}\beta \left( {{\xi _n}~{\text{ta}}{{\text{n}}^2}\beta +{\xi _t}} \right),$$
(20b)
$${c_1}={h_{{\text{helix}}}}n\lambda ~\left( {{\xi _n} - {\xi _t}} \right){\text{sin}}\beta ,$$
(20c)
$${c_2}={h_{{\text{helix}}}}^{2}n\lambda ~{\text{cos}}\beta \left( {{\xi _t}~{\text{ta}}{{\text{n}}^2}\beta +{\xi _n}} \right),$$
(20d)
$${m_{{\text{tail}}}}=4\mu \pi n\lambda {d^2}{\text{cos}}\beta .$$
(20e)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyaadi, H., Bahmanyar, S. Hydrodynamics maneuver of a single helical flagellum swimming robot at low-Reynolds condition. Microfluid Nanofluid 23, 3 (2019). https://doi.org/10.1007/s10404-018-2159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2159-9

Keywords

Navigation