Skip to main content

Advertisement

Log in

Beyond starving cancer: anti-angiogenic therapy

  • Special Feature: Review Article
  • Contrast-enhanced Ultrasound: Current Status and Future Prospects
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Tumor blood vessels contribute to cancer progression by supplying nutrients and oxygen to the tumor, removing waste products, and providing a pathway to distant organs. Current angiogenesis inhibitors primarily target molecules in the vascular endothelial growth factor (VEGF) signaling pathway, inhibiting cancer growth and metastasis by preventing the formation of blood vessels that feed cancer. They also normalize vascular structural abnormalities caused by excess VEGF and improve reflux, resulting in increased drug delivery to cancer tissue and immune cell mobilization. As a result, by normalizing blood vessels, angiogenesis inhibitors have been shown to enhance the effects of chemotherapy and immunotherapy. We present findings on the characteristics of tumor vascular endothelial cells that angiogenesis inhibitors target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N. VEGF as a therapeutic target in cancer. Oncology. 2005;69:11–6.

    Article  CAS  PubMed  Google Scholar 

  3. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175:409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keyt BA, Nguyen HV, Berleau LT, et al. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem. 1996;271:5638–46.

    Article  CAS  PubMed  Google Scholar 

  5. Martin JD, Fukumura D, Duda DG, et al. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harb Perspect Med. 2016;6:a027094-a27125.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maishi N, Annan DA, Kikuchi H, et al. Tumor Endothelial Heterogeneity in Cancer Progression. Cancers (Basel). 2019;11:1511.

    Article  CAS  PubMed  Google Scholar 

  7. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays. 1991;13:31–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ivy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol. 2009;6:569–79.

    Article  CAS  PubMed  Google Scholar 

  9. Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol. 2009;36:S3–17.

    Article  CAS  PubMed  Google Scholar 

  10. Hudes GR. mTOR as a target for therapy of renal cancer. Clin Adv Hematol Oncol. 2007;5:772–4.

    PubMed  Google Scholar 

  11. Meric-Bernstam F, Mills GB. Mammalian target of rapamycin. Semin Oncol. 2004;31:10–7.

    Article  CAS  PubMed  Google Scholar 

  12. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  13. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  Google Scholar 

  14. Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27:1492–504.

    Article  CAS  PubMed  Google Scholar 

  16. Huang Y, Goel S, Duda DG, et al. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Can Res. 2013;73:2943–8.

    Article  CAS  Google Scholar 

  17. Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochem Biophys Acta. 2014;1846:161–79.

    CAS  PubMed  Google Scholar 

  18. Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.

    Article  CAS  PubMed  Google Scholar 

  19. Akiyama K, Ohga N, Hida Y, et al. Tumor endothelial cells acquire drug resistance by mdr1 up-regulation via vegf signaling in tumor microenvironment. Am J Pathol. 2012;180:1283–93.

    Article  CAS  PubMed  Google Scholar 

  20. Naito H, Kidoya H, Sakimoto S, et al. Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J. 2011;31:1–14.

    Google Scholar 

  21. Hida K, Maishi N, Annan DA, et al. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci. 2018;19:223.

    Article  Google Scholar 

  22. Annan DA, Kikuchi H, Maishi N, et al. Tumor endothelial cell-a biological tool for translational cancer research. Int J Mol Sci. 2020;21:332.

    Article  Google Scholar 

  23. Matsuda K, Ohga N, Hida Y, et al. Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun. 2010;394:947–54.

    Article  CAS  PubMed  Google Scholar 

  24. Dudley AC, Khan ZA, Shih SC, et al. Calcification of multipotent prostate tumor endothelium. Cancer Cell. 2008;14:201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohmura-Kakutani H, Akiyama K, Maishi N, et al. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype. PLoS ONE. 2014;9:e113910–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Naito H, Wakabayashi T, Kidoya H, et al. Endothelial Side Population Cells Contribute to Tumor Angiogenesis and Antiangiogenic Drug Resistance. Can Res. 2016;76:3200–10.

    Article  CAS  Google Scholar 

  27. Hida K, Hida Y, Amin DN, et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 2004;64:8249–55.

    Article  CAS  PubMed  Google Scholar 

  28. Akino T, Hida Y, et al. Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am J Pathol. 2010;175:2657–67.

    Article  Google Scholar 

  29. Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:1–7.

    Article  Google Scholar 

  30. Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.

    Article  CAS  PubMed  Google Scholar 

  31. Annan DA, Maishi N, Soga T, et al. Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment. Cell Commun Signal. 2019;17:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.

    Article  PubMed  Google Scholar 

  33. Okuno Y, Nakamura-Ishizu A, Otsu K, et al. Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nat Med. 2012;18:1208–16.

    Article  CAS  PubMed  Google Scholar 

  34. Hojo T, Maishi N, Towfik AM, et al. ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells. Oncotarget. 2017;8:45484–95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma S, Mangala LS, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalucka J, de Rooij L, Goveia J, et al. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell. 2020;180:e20.

    Article  Google Scholar 

  37. Goveia J, Rohlenova K, Taverna F, et al. An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell. 2020;37:13.

    Article  Google Scholar 

  38. Maishi N, Ohba Y, Akiyama K, et al. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep. 2016;6:1–13.

    Article  Google Scholar 

  39. Cong L, Maishi N, Annan DA, et al. Inhibition of stromal biglycan promotes normalization of the tumor microenvironment and enhances chemotherapeutic efficacy. Breast Cancer Res. 2021;23:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ebos JML, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato M, Maishi N, Hida Y, et al. Angiogenic inhibitor pre-administration improves the therapeutic effects of immunotherapy. Cancer Med. 2023. https://doi.org/10.1002/cam4.5696.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang L, Takara K, Yamakawa D, et al. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy. Cancer Sci. 2015;107:36–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Hida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hida, K., Maishi, N., Matsuda, A. et al. Beyond starving cancer: anti-angiogenic therapy. J Med Ultrasonics (2023). https://doi.org/10.1007/s10396-023-01310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10396-023-01310-1

Keywords

Navigation