Skip to main content

Advertisement

Log in

Artificial intelligence in the diagnosis of cirrhosis and portal hypertension

  • Special Feature: Review Article
  • Imaging-based diagnosis and management of cirrhosis/portal hypertension
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Clinically significant portal hypertension is associated with an increased risk of developing gastroesophageal varices and hepatic decompensation. Hepatic venous pressure gradient measurement and esophagogastroduodenoscopy are the gold-standard methods for assessing clinically significant portal hypertension and gastroesophageal varices, respectively. However, invasiveness, cost, and feasibility limit their widespread use, especially if repeated and serial evaluations are required to assess the efficacy of pharmacotherapy. Artificial intelligence describes a range of techniques that allow machines to perform tasks typically thought to require human reasoning and problem-solving skills. Artificial intelligence has made great strides in the field of medicine, and is also involved in portal hypertension diagnosis. Artificial intelligence tools will potentially transform our practice by leveraging massive amounts of data to personalize care to the right patient, in the right amount, at the right time. This review focuses on the recent advances in artificial intelligence for the noninvasive diagnosis of portal hypertension and gastroesophageal varices and monitoring of risk assessment of its complications in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China. Hepatology. 2014;60:2099–108.

    Article  PubMed  Google Scholar 

  2. Schweitzer A, Horn J, Mikolajczyk RT, et al. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–55.

    Article  PubMed  Google Scholar 

  3. Bosch J, Abraldes JG, Berzigotti A, et al. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol. 2009;6:573–82.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Tsao G, Abraldes JG, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017;65:310–35.

    Article  PubMed  Google Scholar 

  5. de Franchis R, Faculty BV. Expanding consensus in portal hypertension. Report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63:743–52.

    Article  PubMed  Google Scholar 

  6. Tripathi D, Stanley AJ, Hayes PC, et al. UK guidelines on the management of variceal haemorrhage in cirrhotic patients. Gut. 2015;64:1680–704.

    Article  PubMed  Google Scholar 

  7. Berzigotti A. Non-invasive evaluation of portal hypertension using ultrasound elastography. J Hepatol. 2017;67:399–411.

    Article  PubMed  Google Scholar 

  8. Shung DL, Garcia-Tsao G. Liver capsule: portal hypertension and varices— pathogenesis, stages, and management. Hepatology. 2017;65:1038.

    Article  PubMed  Google Scholar 

  9. Ichikawa S, Okamura S, Tujigami K, et al. Quantitative analysis of red color sign in the endoscopic evaluation of esophageal varices. Endoscopy. 2001;33:747–53.

    Article  CAS  PubMed  Google Scholar 

  10. Academy of Royal Medical Colleges. Artificial intelligence in healthcare [Internet].[cited2020Feb17].https://www.aomrc.org.uk/wpcontent/uploads/2019/01/Artificial_intelligence_in_healthcare_0119.pdf

  11. Amreen MD, Kris VK, Mazen N, et al. Application of Artificial Intelligence for diagnosis and risk stratification in NAFLD and NASH- the state of the Art. Hepatology. 2021. https://doi.org/10.1002/hep.31869.

    Article  Google Scholar 

  12. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial. JACC Cardiovasc Imaging. 2017;10:1350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iranmanesh P, Vazquez O, Terraz S, et al. Accurate computed tomography–based portal pressure assessment in patients with hepatocellular carcinoma. J Hepatol. 2014;60:969–74.

    Article  PubMed  Google Scholar 

  15. Iranmanesh P, Toso C. Reply to: “Insufficient accuracy of computed tomography based portal pressure assessment in hepatitis B virus-related cirrhosis: an analysis of data from CHESS-1601 trial.” J Hepatol. 2018;69:211–2.

    Article  Google Scholar 

  16. Qi X, Liu F, Li Z, et al. Insufficient accuracy of computed tomography-based portal pressure assessment in hepatitis B virus–related cirrhosis: an analysis of data from CHESS-1601 trial. J Hepatol. 2018;28:210–1.

    Article  Google Scholar 

  17. Procopet B, Cristea VM, Robic MA, et al. Serum tests, liver stiffness and artificial neural networks for diagnosing cirrhosis and portal hypertension. Dig Liver Dis. 2015;47:411–6.

    Article  PubMed  Google Scholar 

  18. Suk KT. Hepatic venous pressure gradient: clinical use in chronic liver disease. Clin Mol Hepatol. 2014;20:6–14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Procopet B, Berzigotti A, Abraldes JG, et al. Real-time shear-wave elastog- raphy: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol. 2015;62:1068–75.

    Article  PubMed  Google Scholar 

  20. Qi X, An W, Liu F, et al. Virtual hepatic venous pressure gradient with CT angiography (CHESS 1601): A prospective multicenter study for the noninvasive diagnosis of portal hypertension. Radiology. 2019;290:370–7.

    Article  PubMed  Google Scholar 

  21. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.

    Article  PubMed  Google Scholar 

  22. Park HJ, Park B, Lee SS. Radiomics and deep learning: hepatic applications. Korean J Radiol. 2020;21:387–401.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

    Article  PubMed  Google Scholar 

  24. Frulio N, Trillaud H. Ultrasound elastography in liver. Diagn Interv Imaging. 2013;94:515–34.

    Article  CAS  PubMed  Google Scholar 

  25. You MW, Kim KW, Pyo J, et al. A Meta-analysis for the diagnostic performance of transient elastography for clinically significant portal hypertension. Ultrasound Med Biol. 2017;43:59–68.

    Article  PubMed  Google Scholar 

  26. Gupta I, Eisenbrey JR, Machado P, et al. Diagnosing portal hypertension with noninvasive subharmonic pressure estimates from a US contrast agent. Radiology. 2021;298:104–11.

    Article  PubMed  Google Scholar 

  27. Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut. 2018;0:1–13.

  28. Dongsheng R, Yu S, Linfeng J, et al. An ultrasound image-based deep multi-scale texture network for liver fibrosis grading in patients with chronic HBV infection. Liver Int. 2021. https://doi.org/10.1111/liv.14999.

    Article  Google Scholar 

  29. Serhatlıoğlu S, Hardalaç F, Kutbay U, et al. Analyses of a cirrhotic patient’s evolution using self organizing mapping and Child-Pugh scoring. J Med Syst. 2015;39:17.

    Article  PubMed  Google Scholar 

  30. Liu F, Ning Z, Liu Y, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study. EBioMedicine. 2018;36:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tseng Y, Ma L, Li S, et al. Application of CT-based radiomics in predicting portal pressure and patient outcome in portal hypertension. Eur J Radiol. 2020;126:108927.

    Article  PubMed  Google Scholar 

  32. Yang JQ, Zeng R, Cao JM, et al. Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature. Clin Radiol. 2019;74(976):e1-976.e9.

    Google Scholar 

  33. Wan S, Wei Y, Zhang X, et al. Multiparametric radiomics nomogram may be used for predicting the severity of esophageal varices in cirrhotic patients. Ann Transl Med. 2020;8:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang Y, Huang F, Yang L, et al. Development and validation of a radiomics signature as a non-invasive complementary predictor of gastroesophageal varices and high-risk varices in compensated advanced chronic liver disease: A multicenter study. J Gastroenterol Hepatol. 2021;36:1562–70.

    Article  CAS  PubMed  Google Scholar 

  35. Ronot M, Lambert S, Elkrief L, et al. Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. Eur Radiol. 2014;24:1394–402.

    PubMed  Google Scholar 

  36. Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut. 2019;68:729–41.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed Y, Hussein RS, Basha TA, et al. Detecting liver fibrosis using a machine learning-based approach to the quantification of the heart-induced deformation in tagged MR images. NMR Biomed. 2020;33:e4215.

    Article  PubMed  Google Scholar 

  38. Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. JAMA. 2016;315:551–2.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marozas M, Zykus R, Sakalauskas A, et al. Noninvasive evaluation of portal hypertension using a supervised learning technique. J Healthc Eng. 2017;2017:6183714.

    Article  PubMed  PubMed Central  Google Scholar 

  41. El-Salam SMA, Abd El-Salam SM, Ezz MM, et al. Performance of machine learning approaches on prediction of esophageal varices for Egyptian chronic hepatitis C patients [Internet]. IMU. 2019;17:100267.

    Google Scholar 

  42. Dong TS, Kalani A, Aby ES, et al. Machine learning-based development and validation of a scoring system for screening high-Risk esophageal varices [Internet]. Clin Gastroenterol Hepatol. 2019;17:1894-901.e1.

    Article  PubMed  Google Scholar 

  43. Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37:2113–31.

    Article  PubMed  Google Scholar 

  44. Masuzaki R, Kanda T, Matsumoto N, et al. Application of artificial intelligence in hepatology: Minireview. Artif Intell Gastroenterol. 2020;1:5–11.

    Article  Google Scholar 

  45. Liu Y, Ning Z, Örmeci N, et al. Deep convolutional neural network-aided detection of portal hypertension in patients with cirrhosis. Clin Gastroenterol Hepatol. 2020;18:2998-3007.e5.

    Article  PubMed  Google Scholar 

  46. Tseng Y, Ma L, Luo T, et al. Non-invasive predictive model for hepatic venous pressure gradient based on a 3-dimensional computed tomography volume rendering technology. Exp Ther Med. 2018;15:3329–35.

    PubMed  PubMed Central  Google Scholar 

  47. Chen M, Wang J, Xiao Y, et al. Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video). Gastrointest Endosc. 2021;93:422-32.e3.

    Article  PubMed  Google Scholar 

  48. Guo L, Gong H, Wang Q, et al. Detection of multiple lesions of gastrointestinal tract for endoscopy using artificial intelligence model: a pilot study. Surg Endosc. 2020. https://doi.org/10.1007/s00464-020-08150-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee CM, Lee SS, Choi WM, et al. An index based on deep learning-measured spleen volume on CT for the assessment of high-risk varix in B-viral compensated cirrhosis. Eur Radiol. 2021;31:3355–65.

    Article  PubMed  Google Scholar 

  50. Qi X, Berzigotti A, Cardenas A, et al. Emerging non-invasive approaches for diagnosis and monitoring of portal hypertension. Lancet Gastroenterol Hepatol. 2018;3:708–19.

    Article  PubMed  Google Scholar 

  51. Chen PH, Hsieh WY, Su CW, et al. Combination of albumin-bilirubin grade and platelets to predict a compensated patient with hepatocellular carcinoma who does not require endoscopic screening for esophageal varices. Gastrointest Endosc. 2018;88:230–9.

    Article  PubMed  Google Scholar 

  52. Calvaruso V, Cacciola I, Licata A, et al. Is Transient Elastography Needed for Noninvasive Assessment of High-Risk Varices? The REAL Experience Am J Gastroenterol. 2019;114:1275–82.

    Article  PubMed  Google Scholar 

  53. Wong GLH, Yuen PC, Ma AJ, et al. Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis. J Gastroenterol Hepatol. 2021;36:543–50.

    Article  PubMed  Google Scholar 

  54. Coskun B, Yuan L, Brain K. Advanced decision support for complex clinical decisions. JBiSE. 2010;3:509–16.

    Article  Google Scholar 

  55. Keltch B, Yuan L, Coskun B. Comparison of AI techniques for prediction of liver fibrosis in hepatitis patients. J Med Syst. 2014;38:60.

    Article  PubMed  Google Scholar 

  56. Wang D, Wang Q, Shan F, et al. Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers. BMC Infect Dis. 2010;10:251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei W, Wu X, Zhou J, et al. Noninvasive evaluation of liver fibrosis reverse using artificial neural network model for chronic hepatitis B patients. Comput Math Methods Med. 2019;2019:7239780.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jiang M, Huang Y, Fan J, et al. Parsing clinical text: how good are the state-of-the-art parsers? BMC Med Inform Decis Mak. 2015;15:S2.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Friedman C, Hripcsak G, Shablinsky I. An evaluation of natural language processing methodologies. Proc AMIA Symp. 1998;855–9.

  60. Nehra MS, Ma Y, Clark C, et al. Use of administrative claims data for identifying patients with cirrhosis. J Clin Gastroenterol. 2013;47:e50–4.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chang EK, Yu CY, Clarke R, et al. Defining a patient population with cirrhosis: an automated algorithm with natural language processing. J Clin Gastroenterol. 2016;50:889–94.

    Article  PubMed  Google Scholar 

  62. Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park JE, Park SY, Kim HJ, et al. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol. 2019;20:1124–37.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XQ and YH were responsible for the concept and design of the review. XQ, YH, XL, and NK were responsible for data acquisition and literature research, drafting of the manuscript, critical revision of the manuscript, and final approval of the manuscript.

Corresponding authors

Correspondence to Xiaolong Qi or Yifei Huang.

Ethics declarations

Conflict of interest

XQ, YH, XL, and NK declare that they have no conflicts of interest.

Ethical statements

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Kang, N., Qi, X. et al. Artificial intelligence in the diagnosis of cirrhosis and portal hypertension. J Med Ultrasonics 49, 371–379 (2022). https://doi.org/10.1007/s10396-021-01153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-021-01153-8

Keywords

Navigation