Skip to main content

Advertisement

Log in

What is glaucomatous optic neuropathy?

  • Forefront Review: Current Controversies
  • Organizers: Tetsuya Yamamoto, MD, PhD, Makoto Aihara, MD, PhD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Glaucomatous optic neuropathy (GON) is the pathohistological feature of glaucoma in the optic nerve. The pathogenesis of GON has been hypothesized, to either originate from compromised mechanical conditions at the lamina cribrosa or as associated with pathological vascular involvement. From a historical perspective, glaucoma is the degeneration of retinal ganglion cells (RGC) due to the elevation of intraocular pressure (IOP). The consensus of glaucoma treatment is generally accepted as sufficient IOP reduction. Is there an additional option to treat GON from the perspective of the vascular theory? In this section, two distinguished leaders in glaucoma research advance their views and discuss the current opinions surrounding the two theories regarding the causes of GON in primary open angle glaucoma (POAG) and normal tension glaucoma (NTG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol. 2009;20:73–8.

    PubMed  PubMed Central  Google Scholar 

  2. Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol. 2010;88:723–9.

    PubMed  Google Scholar 

  3. Aizawa N, Yokoyama Y, Chiba N, Omodaka K, Yasuda M, Otomo T, et al. Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma. Clin Ophthalmol. 2011;5:1171–6.

    PubMed  PubMed Central  Google Scholar 

  4. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–32.

    PubMed  PubMed Central  Google Scholar 

  5. Shoji T, Yoshikawa Y, Kanno J, Ishii H, Ibuki H, Ozaki K, et al. Reproducibility of macular vessel density calculations via imaging with two different swept-source optical coherence tomography angiography systems. Transl Vis Sci Technol. 2018;7:31.

    PubMed  PubMed Central  Google Scholar 

  6. Aizawa N, Nitta F, Kunikata H, Sugiyama T, Ikeda T, Araie M, et al. Laser speckle and hydrogen gas clearance measurements of optic nerve circulation in albino and pigmented rabbits with or without optic disc atrophy. Invest Ophthalmol Vis Sci. 2014;55:7991–6.

    CAS  PubMed  Google Scholar 

  7. Takahashi H, Sugiyama T, Tokushige H, Maeno T, Nakazawa T, Ikeda T, et al. Comparison of CCD-equipped laser speckle flowgraphy with hydrogen gas clearance method in the measurement of optic nerve head microcirculation in rabbits. Exp Eye Res. 2013;108:10–5.

    CAS  PubMed  Google Scholar 

  8. Wang L, Cull GA, Piper C, Burgoyne CF, Fortune B. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Invest Ophthalmol Vis Sci. 2012;53:8303–9.

    PubMed  PubMed Central  Google Scholar 

  9. Shiga Y, Kunikata H, Aizawa N, Kiyota N, Maiya Y, Yokoyama Y, et al. Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Curr Eye Res. 2016;41:1447–533.

    PubMed  Google Scholar 

  10. Shiga Y, Omodaka K, Kunikata H, Ryu M, Yokoyama Y, Tsuda S, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci. 2013;54:7699–706.

    PubMed  Google Scholar 

  11. Shiga Y, Aizawa N, Tsuda S, Yokoyama Y, Omodaka K, Kunikata H, et al. Preperimetric glaucoma prospective study (PPGPS): predicting visual field progression with basal optic nerve head blood flow in normotensive PPG eyes. Transl Vis Sci Technol. 2018;7:11.

    PubMed  PubMed Central  Google Scholar 

  12. Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018;125:1720–8.

    PubMed  Google Scholar 

  13. Lieberman MF, Maumenee AE, Green WR. Histologic studies of the vasculature of the anterior optic nerve. Am J Ophthalmol. 1976;82:405–23.

    CAS  PubMed  Google Scholar 

  14. Kiyota N, Kunikata H, Takahashi S, Shiga Y, Omodaka K, Nakazawa T. Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc. Acta Ophthalmol. 2018;96:e290–e297297.

    PubMed  Google Scholar 

  15. Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–43.

    CAS  PubMed  Google Scholar 

  16. Omodaka K, Horii T, Takahashi S, Kikawa T, Matsumoto A, Shiga Y, et al. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS ONE. 2015;10:e0122347.

    PubMed  PubMed Central  Google Scholar 

  17. Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119:10–20.

    PubMed  Google Scholar 

  18. Omodaka K, Takahashi S, Matsumoto A, Maekawa S, Kikawa T, Himori N, et al. Clinical factors associated with lamina cribrosa thickness in patients with glaucoma, as measured with swept source optical coherence tomography. PLoS ONE. 2016;11:e0153707.

    PubMed  PubMed Central  Google Scholar 

  19. Himori N, Kunikata H, Shiga Y, Omodaka K, Maruyama K, Takahashi H, et al. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016;254:333–41.

    CAS  PubMed  Google Scholar 

  20. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152–81.

    CAS  PubMed  Google Scholar 

  21. Kiyota N, Kunikata H, Shiga Y, Omodaka K, Nakazawa T. Ocular microcirculation measurement with laser speckle flowgraphy and optical coherence tomography angiography in glaucoma. Acta Ophthalmol. 2018;96:e485–e492492.

    CAS  PubMed  Google Scholar 

  22. Kiyota N, Shiga Y, Yasuda M, Aizawa N, Omodaka K, Tsuda S, et al. Sectoral differences in the association of optic nerve head blood flow and glaucomatous visual field defect severity and progression. Invest Ophthalmol Vis Sci. 2019;60:2650–8.

    PubMed  Google Scholar 

  23. Zeitz O, Galambos P, Wagenfeld L, Wiermann A, Wlodarsch P, Praga R, et al. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol. 2006;90:1245–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ernest PJ, Schouten JS, Beckers HJ, Hendrikse F, Prins MH, Webers CA. An evidence-based review of prognostic factors for glaucomatous visual field progression. Ophthalmology. 2013;120:512–9.

    PubMed  Google Scholar 

  25. Flammer J, Konieczka K. The discovery of the Flammer syndrome: a historical and personal perspective. EPMA J. 2017;8:75–977.

    PubMed  PubMed Central  Google Scholar 

  26. Koseki N, Araie M, Tomidokoro A, Nagahara M, Hasegawa T, Tamaki Y, et al. A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology. 2008;115:2049–57.

    PubMed  Google Scholar 

  27. Mozaffarieh M, Fraenkl S, Konieczka K, Flammer J. Targeted preventive measures and advanced approaches in personalised treatment of glaucoma neuropathy. EPMA J. 2010;1:229–35.

    PubMed  PubMed Central  Google Scholar 

  28. Tsuda S, Yokoyama Y, Chiba N, Aizawa N, Shiga Y, Yasuda M, et al. Effect of topical tafluprost on optic nerve head blood flow in patients with myopic disc type. J Glaucoma. 2013;22:398–403.

    PubMed  Google Scholar 

  29. Takayama S, Seki T, Aizawa NT, Takahashi SN, Watanabe M, et al. Short-term effects of acupuncture on open-angle glaucoma in retrobulbar circulation: additional therapy to standard medication. Evid Based Complement Alternat Med. 2011;2011:157090.

    PubMed  PubMed Central  Google Scholar 

  30. Takayama S, Shiga Y, Kokubun T, Konno H, Himori N, Ryu M, et al. The traditional kampo medicine tokishakuyakusan increases ocular blood flow in healthy subjects. Evid Based Complement Alternat Med. 2014;2014:586857.

    PubMed  PubMed Central  Google Scholar 

  31. Anderson DR, Francisco S. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.

    CAS  PubMed  Google Scholar 

  32. Anderson DR, Francisco S. Ultrastructure of the optic nerve head. Arch Ophthalmol. 1970;83:63–73.

    CAS  PubMed  Google Scholar 

  33. Dandona L, Quigley HA, Brown AE, Enger C. Quantitative regional structure of the normal human lamina cribrosa. A racial comparison. Arch Ophthalmol. 1990;108:393–8.

    CAS  PubMed  Google Scholar 

  34. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002;120:1268–79.

    PubMed  Google Scholar 

  35. Collaborative normal-tension group study group. Comparison of glaucomatous progression between untreated patients with normal-tension group and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97.

    Google Scholar 

  36. The AGIS Investigators. Advanced glaucoma intervention study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40.

    Google Scholar 

  37. Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol. 2008;53:S3–10.

    PubMed  Google Scholar 

  38. Quigley HA, Cone FE. Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue. Cell Tissue Res. 2013;353:231–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hernandez MR, Pena JDO. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol. 1997;115:389–95.

    CAS  PubMed  Google Scholar 

  40. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–91.

    CAS  PubMed  Google Scholar 

  41. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.

    CAS  PubMed  Google Scholar 

  42. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–733.

    PubMed  Google Scholar 

  43. Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2011;93:120–32.

    CAS  PubMed  Google Scholar 

  44. Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976;15:606–16.

    CAS  PubMed  Google Scholar 

  45. Anderson DR, Hendrickson A. Effect of interocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol Vis Sci. 1974;13:771–83.

    CAS  Google Scholar 

  46. Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nerve head during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:828–46.

    Google Scholar 

  47. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41:764–74.

    CAS  PubMed  Google Scholar 

  48. Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, et al. Retrograde axonal transport of BDMF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41:3460–6.

    CAS  PubMed  Google Scholar 

  49. Abu-Amero KK, Morales J, Bosley T. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47:2533–41.

    PubMed  Google Scholar 

  50. Osborne NN. Mitochondria. Their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res. 2010;90:750–7.

    CAS  PubMed  Google Scholar 

  51. Sigal IA, Yang H, Roberts MD, Burgoyne CF, Downs JC. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Invest Ophthalmol Vis Sci. 2011;52:1896–907.

    PubMed  PubMed Central  Google Scholar 

  52. Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:7109–21.

    PubMed  PubMed Central  Google Scholar 

  53. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46:4189–99.

    PubMed  Google Scholar 

  54. Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthamol Vis Sci. 2011;52:5656–69.

    Google Scholar 

  55. Girard MJA, Zimmo L, White ET. Mari JM Ethier CR, Strouthidis NG. Towards a biomechanically-based diagnosis for glaucoma: in vivo deformation mapping of the human optic nerve head. In: ASME Proceedings 2013; 423–4.

  56. Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res. 2009;88:799–807.

    CAS  PubMed  Google Scholar 

  57. Yan D, McPheeters S, Johnson G, Utzinger U, Vande Geest JP. Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci. 2011;52:821–9.

    PubMed  PubMed Central  Google Scholar 

  58. Spoerl E, Boehm AG, Pillunat LE. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 2005;46:1286–90.

    PubMed  Google Scholar 

  59. Aizawa N, Kunikata H, Nakazawa T. Diagnostic power of laser speckle flowgraphy-measured optic disc microcirculation for open-angle glaucoma: analysis of 314 eyes. Clin Exp Ophthalmol. 2019;47:680–3.

    PubMed  Google Scholar 

  60. Shiga Y, Shimura M, Asano T, Tsuda S, Yokoyama Y, Aizawa N, et al. The influence of posture change on ocular blood flow in normal subjects, measured by laser speckle flowgraphy. Curr Eye Res. 2013;38:691–8.

    PubMed  Google Scholar 

  61. Kiyota N, Shiga Y, Suzuki S, Sato M, Takada N, Maekawa S, et al. The effect of systemic hyperoxia on optic nerve head blood flow in primary open-angle glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58:3181–8.

    CAS  PubMed  Google Scholar 

  62. Shiga Y, Sato M, Maruyama K, Takayama S, Omodaka K, Himori N, et al. Assessment of short-term changes in optic nerve head hemodynamics in hyperoxic conditions with laser speckle flowgraphy. Curr Eye Res. 2015;40:1055–62.

    PubMed  Google Scholar 

  63. Kiyota N, Shiga Y, Ichinohasama K, Yasuda M, Aizawa N, Omodaka K, et al. The impact of intraocular pressure elevation on optic nerve head and choroidal blood flow. Invest Ophthalmol Vis Sci. 2018;59:3488–96.

    CAS  PubMed  Google Scholar 

  64. Aizawa N, Kunikata H, Shiga Y, Yokoyama Y, Omodaka K, Nakazawa T. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14:113.

    PubMed  PubMed Central  Google Scholar 

  65. Sato R, Kunikata H, Asano T, Aizawa N, Kiyota N, Shiga Y, et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: The Taiwa Study. Sci Rep. 2019;9:8875.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toru Nakazawa or Takeo Fukuchi.

Ethics declarations

Conflicts of Interest

T. Nakazawa, Grant (Santen, Senju, Topcon, Nidek), Speaker fee (Santen, Senju, Topcon), Lecture fee (Santen, Senju, Topcon), Consultant fee (Santen); T. Fukuchi, Grant(HOYA, Atsuzawa Proteze, Shiga Medical Instruments, Union Medical, Retina Kitanihon, Abbott Medical Optics, Otsuka, Santen, SENJU, Alcon Japan, KOWA, Pfizer Japan, GLAUCOS Japan, abbvie), Lecture fee (Otsuka, Santen, SENJU, Alcon Japan, KOWA, Pfizer Japan, GLAUCOS Japan, Nitten, Alcon), Consultant fee (Otsuka, Santen, SENJU, Alcon Japan, KOWA, GLAUCOS Japan, abbvie, Alcon).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizers: Tetsuya Yamamoto, MD, PhD, Makoto Aihara, MD, PhD.

Corresponding Authors: Toru Nakazawa, Takeo Fukuchi

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakazawa, T., Fukuchi, T. What is glaucomatous optic neuropathy?. Jpn J Ophthalmol 64, 243–249 (2020). https://doi.org/10.1007/s10384-020-00736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00736-1

Keywords

Navigation