Skip to main content
Log in

Association between sex and Huntington’s disease: an updated review on symptomatology and prognosis of neurodegenerative disorders

Zusammenhang zwischen Geschlecht und Huntington-Chorea: aktualisierte Übersicht zur Symptomatologie und Prognose neurodegenerativer Erkrankungen

  • Review
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Huntington’s disease is a rare autosomal dominant disorder presenting with chorea, rigidity, hypo-/akinesia, cognitive decline, and psychiatric disturbances. Numerous risk factors have been defined in the onset of this disease. However, the number of CAG repeats in the genes are the most crucial factor rendering patients susceptible to the disease. Studies have shown significant differences in onset and disease presentation among the sexes, which prompts analysis of the impact of different sexes on disease etiology and progression. This article therefore discusses the evidence-based role of sex in aspects of symptomatology, pathogenesis, biomarkers, progression, and prognosis of Huntington’s disease, with a secondary review of sex-linked differences in Alzheimer’s and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ajitkumar A, De Jesus O. Huntington disease. Treasure Island (FL): StatPearls; 2021.

    Google Scholar 

  2. Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis. 2010;5:40.

    PubMed  PubMed Central  Google Scholar 

  3. Walker FO. Huntington’s disease. Semin Neurol. 2007;27(2):143–50.

    PubMed  Google Scholar 

  4. No authors listed. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s disease collaborative research group. Cell. 1993;72(6):971–83.

    Google Scholar 

  5. Quarrell O, O’Donovan KL, Bandmann O, Strong M. The prevalence of juvenile Huntington’s disease: a review of the literature and meta-analysis. PLoS Curr. 2012;4:e4f8606b742ef3.

    PubMed  PubMed Central  Google Scholar 

  6. Zühlke C, Riess O, Schröder K, Siedlaczck I, Epplen JT, Engel W, et al. Expansion of the (CAG)n repeat causing Huntington’s disease in 352 patients of German origin. Hum Mol Genet. 1993;2(9):1467–9.

    PubMed  Google Scholar 

  7. Foroud T, Gray J, Ivashina J, Conneally PM. Differences in duration of Huntington’s disease based on age at onset. J Neurol Neurosurg Psychiatry. 1999;66(1):52–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Telenius H, Kremer HP, Theilmann J, Andrew SE, Almqvist E, Anvret M, et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum Mol Genet. 1993;2(10):1535–40.

    CAS  PubMed  Google Scholar 

  9. Trottier Y, Biancalana V, Mandel JL. Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet. 1994;31(5):377–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nørremølle A, Sørensen SA, Fenger K, Hasholt L. Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington’s disease. Clin Genet. 1995;47(3):113–7.

    PubMed  Google Scholar 

  11. Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL. Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet. 1999;36(2):108–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wheeler VC, Persichetti F, McNeil SM, Mysore JS, Mysore SS, MacDonald ME, et al. Factors associated with HD CAG repeat instability in Huntington disease. J Med Genet. 2007;44(11):695–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet. 1996;14(1):55–61.

    CAS  PubMed  Google Scholar 

  15. Nicoll JA, Roberts GW, Graham DI. Apolipoprotein E epsilon 4 allele is associated with deposition of amyloid beta-protein following head injury. Nat Med. 1995;1(2):135–7.

    CAS  PubMed  Google Scholar 

  16. Novak MJ, Tabrizi SJ. Huntington’s disease. BMJ. 2010;340:c3109.

    PubMed  Google Scholar 

  17. Zielonka D, Marinus J, Roos RA, De Michele G, Di Donato S, Putter H, et al. The influence of gender on phenotype and disease progression in patients with Huntington’s disease. Parkinsonism Relat Disord. 2013;19(2):192–7.

    PubMed  Google Scholar 

  18. Zielonka D, Ren M, De Michele G, Roos RAC, Squitieri F, Bentivoglio AR, et al. The contribution of gender differences in motor, behavioral and cognitive features to functional capacity, independence and quality of life in patients with Huntington’s disease. Parkinsonism Relat Disord. 2018;49:42–7.

    PubMed  Google Scholar 

  19. Paulsen JS. Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep. 2011;11(5):474–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Solomon AC, Stout JC, Johnson SA, Langbehn DR, Aylward EH, Brandt J, et al. Verbal episodic memory declines prior to diagnosis in Huntington’s disease. Neuropsychologia. 2007;45(8):1767–76.

    PubMed  PubMed Central  Google Scholar 

  21. Filoteo JV, Delis DC, Roman MJ, Demadura T, Ford E, Butters N, et al. Visual attention and perception in patients with Huntington’s disease: comparisons with other subcortical and cortical dementias. J Clin Exp Neuropsychol. 1995;17(5):654–67.

    CAS  PubMed  Google Scholar 

  22. Marder K, Zhao H, Myers RH, Cudkowicz M, Kayson E, Kieburtz K, et al. Rate of functional decline in Huntington’s disease. Huntington study group. Neurology. 2000;54(2):452–8.

    CAS  PubMed  Google Scholar 

  23. Saleh N, Moutereau S, Azulay JP, Verny C, Simonin C, Tranchant C, et al. High insulinlike growth factor I is associated with cognitive decline in Huntington disease. Neurology. 2010;75(1):57–63.

    CAS  PubMed  Google Scholar 

  24. López-Sendón JL, Royuela A, Trigo P, Orth M, Lange H, Reilmann R, et al. What is the impact of education on Huntington’s disease? Mov Disord. 2011;26(8):1489–95.

    PubMed  Google Scholar 

  25. Louis ED, Vonsattel JP. The emerging neuropathology of essential tremor. Mov Disord. 2008;23(2):174–82.

    PubMed  PubMed Central  Google Scholar 

  26. Hubble JP, Busenbark KL, Pahwa R, Lyons K, Koller WC. Clinical expression of essential tremor: effects of gender and age. Mov Disord. 1997;12(6):969–72.

    CAS  PubMed  Google Scholar 

  27. Hardesty DE, Maraganore DM, Matsumoto JY, Louis ED. Increased risk of head tremor in women with essential tremor: longitudinal data from the Rochester epidemiology project. Mov Disord. 2004;19(5):529–33.

    PubMed  Google Scholar 

  28. Cossu G, Colosimo C. Hyperkinetic movement disorder emergencies. Curr Neurol Neurosci Rep. 2017;17(1):6.

    PubMed  Google Scholar 

  29. Savitt D, Jankovic J. Tardive syndromes. J Neurol Sci. 2018;389:35–42.

    PubMed  Google Scholar 

  30. van Duijn E, Craufurd D, Hubers AA, Giltay EJ, Bonelli R, Rickards H, et al. Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J Neurol Neurosurg Psychiatry. 2014;85(12):1411–8.

    PubMed  Google Scholar 

  31. Dale M, Maltby J, Shimozaki S, Cramp R, Rickards H. Disease stage, but not sex, predicts depression and psychological distress in Huntington’s disease: a European population study. J Psychosom Res. 2016;80:17–22.

    PubMed  Google Scholar 

  32. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21(9):655–79.

    CAS  PubMed  Google Scholar 

  33. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB. Sex and depression in the national comorbidity survey. I: lifetime prevalence, chronicity and recurrence. J Affect Disord. 1993;29(2–3):85–96.

    CAS  PubMed  Google Scholar 

  34. Rowe KC, Paulsen JS, Langbehn DR, Wang C, Mills J, Beglinger LJ, et al. Patterns of serotonergic antidepressant usage in prodromal Huntington disease. Psychiatry Res. 2012;196(2–3):309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chu EM, O’Neill M, Purkayastha DD, Knight C. Huntington’s disease: a forensic risk factor in women. J Clin Mov Disord. 2019;6:3.

    PubMed  PubMed Central  Google Scholar 

  36. Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, Roos RA. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology. 2008;71(19):1506–13.

    CAS  PubMed  Google Scholar 

  37. Costa de Miranda R, Di Lorenzo N, Andreoli A, Romano L, De Santis GL, Gualtieri P, et al. Body composition and bone mineral density in Huntington’s disease. Nutrition. 2019;59:145–9.

    PubMed  Google Scholar 

  38. Beyer C, Pilgrim C, Reisert I. Dopamine content and metabolism in mesencephalic and diencephalic cell cultures: sex differences and effects of sex steroids. J Neurosci. 1991;11(5):1325–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Laakso A, Vilkman H, Bergman J, Haaparanta M, Solin O, Syvalahti E, et al. Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry. 2002;52(7):759–63.

    CAS  PubMed  Google Scholar 

  40. Wong KK, Muller ML, Kuwabara H, Studenski SA, Bohnen NI. Gender differences in nigrostriatal dopaminergic innervation are present at young-to-middle but not at older age in normal adults. J Clin Neurosci. 2012;19(1):183–4.

    PubMed  Google Scholar 

  41. Jankovic J, Hallett M, Okun MS, Comella CL, Fahn S. Principles and practice of movement disorders E‑book. Elsevier; 2021.

    Google Scholar 

  42. Kara M, Smith ND. Sex differences in Parkinson’s disease and other movement disorders. Exp Neurol. 2014;259:44–56.

    Google Scholar 

  43. Tsang KL, Ho SL, Lo SK. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology. 2000;54(12):2292–8.

    CAS  PubMed  Google Scholar 

  44. Weaver CE Jr., Park-Chung M, Gibbs TT, Farb DH. 17beta-estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res. 1997;761(2):338–41.

    CAS  PubMed  Google Scholar 

  45. Hogervorst E, Williams J, Budge M, Barnetson L, Combrinck M, Smith AD. Serum total testosterone is lower in men with Alzheimer’s disease. Neuro Endocrinol Lett. 2001;22(3):163–8.

    CAS  PubMed  Google Scholar 

  46. Okun MS, McDonald WM, DeLong MR. Refractory nonmotor symptoms in male patients with Parkinson disease due to testosterone deficiency: a common unrecognized comorbidity. Arch Neurol. 2002;59(5):807–11.

    PubMed  Google Scholar 

  47. Militello A, Vitello G, Lunetta C, Toscano A, Maiorana G, Piccoli T, et al. The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. J Neurol Sci. 2002;195(1):67–70.

    CAS  PubMed  Google Scholar 

  48. Markianos M, Panas M, Kalfakis N, Vassilopoulos D. Plasma testosterone, dehydroepiandrosterone sulfate, and cortisol in female patients with Huntington’s disease. Neuro Endocrinol Lett. 2007;28(2):199–203.

    CAS  PubMed  Google Scholar 

  49. Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, et al. Neuroendocrine disturbances in Huntington’s disease. PLoS One. 2009;4(3):e4962.

    PubMed  PubMed Central  Google Scholar 

  50. De Pablo-Fernández E, Lees AJ, Holton JL, Warner TT. Prognosis and neuropathologic correlation of clinical subtypes of parkinson disease. JAMA Neurol. 2019;76(4):470–9.

    PubMed  PubMed Central  Google Scholar 

  51. Haaxma CA, Bloem BR, Borm GF, Oyen WJ, Leenders KL, Eshuis S, et al. Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(8):819–24.

    PubMed  Google Scholar 

  52. Benedetti MD, Maraganore DM, Bower JH, McDonnell SK, Peterson BJ, Ahlskog JE, et al. Hysterectomy, menopause, and estrogen use preceding Parkinson’s disease: an exploratory case-control study. Mov Disord. 2001;16(5):830–7.

    CAS  PubMed  Google Scholar 

  53. Latourelle JC, Beste MT, Hadzi TC, Miller RE, Oppenheim JN, Valko MP, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol. 2017;16(11):908–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Melcangi RC, Giatti S, Garcia-Segura LM. Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: sex-specific features. Neurosci Biobehav Rev. 2016;67:25–40.

    CAS  PubMed  Google Scholar 

  55. Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med. 2000;27(7):867–9.

    CAS  PubMed  Google Scholar 

  56. Meoni S, Macerollo A, Moro E. Sex differences in movement disorders. Nat Rev Neurol. 2020;16(2):84–96.

    CAS  PubMed  Google Scholar 

  57. Arning L, Saft C, Wieczorek S, Andrich J, Kraus PH, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet. 2007;122(2):175–82.

    CAS  PubMed  Google Scholar 

  58. Gan-Or Z, Bar-Shira A, Mirelman A, Gurevich T, Kedmi M, Giladi N, et al. LRRK2 and GBA mutations differentially affect the initial presentation of Parkinson disease. Neurogenetics. 2010;11(1):121–5.

    CAS  PubMed  Google Scholar 

  59. Szewczyk-Krolikowski K, Tomlinson P, Nithi K, Wade-Martins R, Talbot K, Ben-Shlomo Y, et al. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: initial findings from the Oxford Parkinson disease center (OPDC) discovery cohort. Parkinsonism Relat Disord. 2014;20(1):99–105.

    PubMed  Google Scholar 

  60. Cholerton B, Johnson CO, Fish B, Quinn JF, Chung KA, Peterson-Hiller AL, et al. Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Parkinsonism Relat Disord. 2018;50:29–36.

    PubMed  PubMed Central  Google Scholar 

  61. Zielonka D, Stawinska-Witoszynska B. Gender differences in non-sex linked disorders: insights from Huntington’s disease. Front Neurol. 2020;11:571.

    PubMed  PubMed Central  Google Scholar 

  62. Beinhoff U, Tumani H, Brettschneider J, Bittner D, Riepe MW. Gender-specificities in Alzheimer’s disease and mild cognitive impairment. J Neurol. 2008;255(1):117–22.

    CAS  PubMed  Google Scholar 

  63. Howlett DR, Richardson JC, Austin A, Parsons AA, Bate ST, Davies DC, et al. Cognitive correlates of Abeta deposition in male and female mice bearing amyloid precursor protein and presenilin‑1 mutant transgenes. Brain Res. 2004;1017(1–2):130–6.

    CAS  PubMed  Google Scholar 

  64. Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry. 2005;62(6):685–91.

    PubMed  Google Scholar 

  65. Seshadri S, Wolf PA, Beiser A, Au R, McNulty K, White R, et al. Lifetime risk of dementia and Alzheimer’s disease. The impact of mortality on risk estimates in the Framingham study. Neurology. 1997;49(6):1498–504.

    CAS  PubMed  Google Scholar 

  66. Andersen K, Launer LJ, Dewey ME, Letenneur L, Ott A, Copeland JR, et al. Gender differences in the incidence of AD and vascular dementia: the EURODEM studies. EURODEM incidence research group. Neurology. 1999;53(9):1992–7.

    CAS  PubMed  Google Scholar 

  67. Chene G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, et al. Gender and incidence of dementia in the Framingham heart study from mid-adult life. Alzheimers Dement. 2015;11(3):310–20.

    PubMed  Google Scholar 

  68. Hanamsagar R, Bilbo SD. Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development. J Steroid Biochem Mol Biol. 2016;160:127–33.

    CAS  PubMed  Google Scholar 

  69. Hall JR, Wiechmann AR, Johnson LA, Edwards M, Barber RC, Winter AS, et al. Biomarkers of vascular risk, systemic inflammation, and microvascular pathology and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2013;35(2):363–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mastrokolias A, Ariyurek Y, Goeman JJ, van Duijn E, Roos RA, van der Mast RC, et al. Huntington’s disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur J Hum Genet. 2015;23(10):1349–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Corey-Bloom J, Haque A, Aboufadel S, Snell C, Fischer RS, Granger SW, et al. Uric acid as a potential peripheral biomarker for disease features in Huntington’s patients. Front Neurosci. 2020;14:73.

    PubMed  PubMed Central  Google Scholar 

  72. Gutierrez A, Corey-Bloom J, Thomas EA, Desplats P. Evaluation of biochemical and epigenetic measures of peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in Huntington’s disease patients. Front Mol Neurosci. 2020;12:335.

    PubMed  PubMed Central  Google Scholar 

  73. Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging. 2005;26(1):115–23.

    CAS  PubMed  Google Scholar 

  74. Chang KH, Wu YR, Chen YC, Chen CM. Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun. 2015;44:121–7.

    CAS  PubMed  Google Scholar 

  75. Pekmezovic T, Svetel M, Maric J, Dujmovic-Basuroski I, Dragasevic N, Keckarevic M, et al. Survival of Huntington’s disease patients in Serbia: longer survival in female patients. Eur J Epidemiol. 2007;22(8):523–6.

    PubMed  Google Scholar 

  76. Byars JA, Beglinger LJ, Moser DJ, Gonzalez-Alegre P, Nopoulos P. Substance abuse may be a risk factor for earlier onset of Huntington disease. J Neurol. 2012;259(9):1824–31.

    CAS  PubMed  Google Scholar 

  77. Myers RH, Sax DS, Koroshetz WJ, Mastromauro C, Cupples LA, Kiely DK, et al. Factors associated with slow progression in Huntington’s disease. Arch Neurol. 1991;48(8):800–4.

    CAS  PubMed  Google Scholar 

  78. Cao JK, Detloff PJ, Gardner RG, Stella N. Sex-dependent behavioral impairments in the HdhQ350/+ mouse line. Behav Brain Res. 2018;337:34–45.

    CAS  PubMed  Google Scholar 

  79. Pietropaolo S, Delage P, Cayzac S, Crusio WE, Cho YH. Sex-dependent changes in social behaviors in motor pre-symptomatic R6/1 mice. PLoS One. 2011;6(5):e19965.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuljis DA, Gad L, Loh DH, MacDowell Kaswan Z, Hitchcock ON, Ghiani CA, et al. Sex differences in circadian dysfunction in the BACHD mouse model of Huntington’s disease. PLoS One. 2016;11(2):e147583.

    PubMed  PubMed Central  Google Scholar 

  81. Corrochano S, Renna M, Osborne G, Carter S, Stewart M, May J, et al. Reducing Igf-1r levels leads to paradoxical and sexually dimorphic effects in HD mice. PLoS One. 2014;9(8):e105595.

    PubMed  PubMed Central  Google Scholar 

  82. Pfalzer AC, Wages PA, Porter NA, Bowman AB. Striatal cholesterol precursors are altered with age in female Huntington’s disease model mice. J Huntingtons Dis. 2019;8(2):161–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mo C, Pang TY, Ransome MI, Hill RA, Renoir T, Hannan AJ. High stress hormone levels accelerate the onset of memory deficits in male Huntington’s disease mice. Neurobiol Dis. 2014;69:248–62.

    CAS  PubMed  Google Scholar 

  84. Mo C, Renoir T, Pang TY, Hannan AJ. Short-term memory acquisition in female Huntington’s disease mice is vulnerable to acute stress. Behav Brain Res. 2013;253:318–22.

    PubMed  Google Scholar 

  85. Polyzos AA, Wood NI, Williams P, Wipf P, Morton AJ, McMurray CT. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex- dependent. PLoS ONE. 2018;13(4):e194580.

    PubMed  PubMed Central  Google Scholar 

  86. Skillings EA, Morton AJ. Delayed onset and reduced cognitive deficits through pre-conditioning with 3‑nitropropionic acid is dependent on sex and CAG repeat length in the R6/2 mouse model of Huntington’s disease. J Huntingtons Dis. 2016;5(1):19–32.

    CAS  PubMed  Google Scholar 

  87. Khodagholi F, Maleki A, Motamedi F, Mousavi MA, Rafiei S, Moslemi M. Oxytocin prevents the development of 3‑NP-induced anxiety and depression in male and female rats: possible interaction of OXTR and mGluR2. Cell Mol Neurobiol. 2022;42(4):1105–23. https://doi.org/10.1007/s10571-020-01003-0.

    Article  CAS  PubMed  Google Scholar 

  88. Connor B, Sun Y, von Hieber D, Tang SK, Jones KS, Maucksch C. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington’s disease. Gene Ther. 2016;23(3):283–95.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare no funding sources.

Author information

Authors and Affiliations

Authors

Contributions

Nimra Hasnain, Taha Bin Arif, Roha Shafaut, and Faiza Zakaria performed the literature search, drafted the initial manuscript, approved the final version of the manuscript, and agree to be accountable for all aspects in ensuring that questions related to accuracy or integrity of any part of the work are appropriately investigated and resolved. Syeda Zainab Fatima and Ibtehaj Ul Haque contributed to the conception of the work, revised the manuscript for important intellectual content, approved the final version of the manuscript, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Taha Bin Arif MBBS.

Ethics declarations

Conflict of interest

N. Hasnain, T.B. Arif, R. Shafaut, F. Zakaria, S.Z. Fatima, and I.U. Haque declare that they have no competing interests.

Ethical standards

Ethics committee approval is not required for this type of article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnain, N., Arif, T.B., Shafaut, R. et al. Association between sex and Huntington’s disease: an updated review on symptomatology and prognosis of neurodegenerative disorders. Wien Med Wochenschr 174, 87–94 (2024). https://doi.org/10.1007/s10354-022-00941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-022-00941-2

Keywords

Navigation