Skip to main content

Advertisement

Log in

Experimental laboratory biomarkers in multiple sclerosis

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system; the cause of this condition remains unknown. Researchers have analyzed different biomarkers related to MS. Here, experimental laboratory biomarkers for MS are identified and analyzed.

Methods

The current study examined articles investigating biomarkers for MS. Records were obtained from the PubMed, LILACS, and EBSCO databases using an identical search strategy and terms that included “multiple sclerosis,” “MS,” and “biomarkers.” In the current review, we also focus on lesser known biomarkers that have not yet been established for use in clinical practice.

Results

Previous studies have explored molecular substances that may help diagnose MS and manage its adverse effects. Commonly studied factors include neurofilaments, sCD163, CXCL13, NEO, NF‑L, OPN, B cells, T cells, and integrin-binding proteins.

Conclusions

Interactions between environmental and genetic factors have been implicated in the development of MS. Previous investigations have identified a wide range of biomarkers that can be used for diagnosis and disease management. These molecules and their associated studies provide vital insight and data to help primary physicians improve clinical and health outcomes for MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. von Büdingen HC, Gulati M, Kuenzle S, Fischer K, Rupprecht TA, Goebels N. Clonally expanded plasma cells in the cerebrospinal fluid of patients with central nervous system autoimmune demyelination produce “oligoclonal bands. J Neuroimmunol. 2010;218(1–2):134–9.

    Article  Google Scholar 

  2. Thompson S, Jones J, Cox A, Compston D, Coles A. B‑cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol. 2010;30(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann-Horn K, Kronsbein HC, Weber MS. Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges. Ther Adv Neurol Disord. 2013;6(3):161–73. https://doi.org/10.1177/1756285612474333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B‑cell cytokine responses a trigger of T‑cell-mediated disease in MS? Ann Neurol. 2010;67(4):452–61. https://doi.org/10.1002/ana.21939.

    Article  CAS  PubMed  Google Scholar 

  5. Beltrán E, Obermeier B, Moser M, Coret F, Simó-Castelló M, Boscá I, et al. Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain. 2014;137(10):2703–14. https://doi.org/10.1093/brain/awu205.

    Article  PubMed  Google Scholar 

  6. Wang H, Naghavi M, Allen C, Barber R, Bhutta Z, Carter A, et al. GBD 2015 mortality and causes of death collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1459–544.

    Article  Google Scholar 

  7. Sormani MP, Signori A, Siri P, De Stefano N. Time to first relapse as an endpoint in multiple sclerosis clinical trials. Mult Scler. 2013;19:466–74.

    Article  CAS  PubMed  Google Scholar 

  8. Blauth K, Soltys J, Matschulat A, Reiter CR, Ritchie A, Baird NL, et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol. 2015;130(6):765–81. https://doi.org/10.1007/s00401-015-1500-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scalfari A, Neuhaus A, Degenhardt A, Rice G, Muraro P, Daumer M, et al. The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability. Brain. 2010;133(7):1914–29. https://doi.org/10.1093/brain/awq118.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Derfuss T, Parikh K, Velhin S, Braun M, Mathey E, Krumbholz M. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci U S A. 2009;106(20):8302–7. https://doi.org/10.1073/pnas.0901496106.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188–97. https://doi.org/10.1056/NEJMoa1100648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meinl E, Derfuss T, Krumbholz M, Pröbstel AK, Hohlfeld R. Humoral autoimmunity in multiple sclerosis. J Neurol Sci. 2011;306(1–2):180–2. https://doi.org/10.1016/j.jns.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  13. Ketelslegers IA, Van Pelt DE, Bryde S, Neuteboom RF, Catsman-Berrevoets CE, Hamann D. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult Scler. 2015;21(12):1513–20. https://doi.org/10.1177/1352458514566666.

    Article  CAS  PubMed  Google Scholar 

  14. Joseph FG, Hirst CL, Pickersgill TP, Ben-Shlomo Y, Robertson NP, Scolding NJ. CSF oligoclonal band status informs prognosis in multiple sclerosis: a case-control study of 100 patients. J Neurol Neurosurg Psychiatry. 2009;80(3):292–6. https://doi.org/10.1136/jnnp.2008.150896.

    Article  CAS  PubMed  Google Scholar 

  15. Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med. 2014;6(248):248ra107. https://doi.org/10.1126/scitranslmed.3008879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8(11):613–23. https://doi.org/10.1038/nrneurol.2012.203.

    Article  CAS  PubMed  Google Scholar 

  17. McLaughlin KA, Chitnis T, Newcombe J, Franz B, Kennedy J, McArdel S. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. J Immunol. 2009;183(6):4067–76. https://doi.org/10.4049/jimmunol.0801888.

    Article  CAS  PubMed  Google Scholar 

  18. von Büdingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J. B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest. 2012;122(12):4533–43. https://doi.org/10.1172/JCI63842.

    Article  CAS  Google Scholar 

  19. Sormani MP, Tintorè M, Rovaris M, Rovira A, Vidal X, Bruzzi P, et al. Will Rogers phenomenon in multiple sclerosis. Ann Neurol. 2008;64:428–33.

    Article  PubMed  Google Scholar 

  20. Runia TF, Hop WC, de Rijke YB, Buljevac D, Hintzen RQ. Lower serum vitamin D levels are associated with higher relapse risk in multiple sclerosis. Neurology. 2012;79:261–6.

    Article  CAS  PubMed  Google Scholar 

  21. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86. https://doi.org/10.1212/WNL.0000000000000560.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Teunissen CE, Iacobaeus E, Khademi M. Combination of CSF N‑acetylaspartate and neurofilaments in multiple sclerosis. Neurology. 2009;72(15):1322–9.

    Article  CAS  PubMed  Google Scholar 

  23. Arneth B, Kraus J. Laboratory Biomarkers of Multiple Sclerosis (MS). Clinical Biochemistry. 2022;99:1–8. https://doi.org/10.1016/j.clinbiochem.2021.10.004.

    Article  CAS  PubMed  Google Scholar 

  24. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B‑cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88.

    Article  CAS  PubMed  Google Scholar 

  25. Fazekas F, Offenbacher H, Fuchs S, Schmidt R, Niederkorn K, Horner S, et al. Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology. 1988;38(12):1822–5. https://doi.org/10.1212/wnl.38.12.1822.

    Article  CAS  PubMed  Google Scholar 

  26. Barkhof F, Rocca M, Francis G, et al. Validation of diagnostic magnetic resonance imaging criteria for multiple sclerosis and response to interferon beta-1a. Ann Neurol. 2003;53:718–24.

    Article  PubMed  Google Scholar 

  27. Filippi M, Rocca MA, Ciccarelli O, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15:292–303.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73. https://doi.org/10.1016/S1474-4422(17)30470-2.

    Article  PubMed  Google Scholar 

  29. Huss AM, Halbgebauer S, Öckl P, Trebst C, Spreer A, Borisow N, et al. Importance of cerebrospinal fluid analysis in the era of McDonald 2010 criteria: a German-Austrian retrospective multicenter study in patients with a clinically isolated syndrome. J Neurol. 2016;263(12):2499–504. https://doi.org/10.1007/s00415-016-8302-1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuhle J, Leppert D, Petzold A, et al. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology. 2011;76(14):1206–13.

    Article  CAS  PubMed  Google Scholar 

  31. Comabella M, Montalbana X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 2014;13:113–26.

    Article  PubMed  Google Scholar 

  32. Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler. 2012;18(5):552–6.

    Article  CAS  PubMed  Google Scholar 

  33. Salzer J, Svenningsson A, Sundstrom P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler. 2010;16(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  34. Martinez MA, Olsson B, Bau L. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler. 2015;21(5):550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stangel M, Fredrikson S, Meinl E, Petzold A, Stüve O, Tumani H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol. 2013;9(5):267–76. https://doi.org/10.1038/nrneurol.2013.41.

    Article  CAS  PubMed  Google Scholar 

  36. Hümmert MW, Wurster U, Bönig L, Schwenkenbecher P, Sühs KW, Alvermann S, et al. Investigation of oligoclonal IgG bands in tear fluid of multiple sclerosis patients. Front Immunol. 2019;10:1110. https://doi.org/10.3389/fimmu.2019.01110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Modvig S, Degn M, Sander B. Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis. Mult Scler. 2016;22(5):590–8.

    Article  CAS  PubMed  Google Scholar 

  38. Novakova L, Zetterberg H, Sundström P, Axelsson M, Khademi M, Gunnarsson M, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gama PD, Machado LD, Livramento JA, Gomes HR, Adoni T, Lino AM, et al. Study of oligoclonal bands restricted to the cerebrospinal fluid in multiple sclerosis patients in the city of São Paulo. Arq Neuropsiquiatr. 2009;67:1017–22.

    Article  PubMed  Google Scholar 

  40. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, et al. Potassium channel KIR4. 1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367(2):115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deisenhammer F, Zetterberg H, Fitzner B, Zettl UK. The cerebrospinal fluid in multiple sclerosis. Front Immunol. 2019;10:726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toscano S, Patti F. CSF biomarkers in multiple sclerosis: beyond neuroinflammation. Neurol Neuroimmunol Neuroinflamm. 2021;8(1):14–41.

    CAS  Google Scholar 

  43. Senel M, Tumani H, Lauda F, Presslauer S, Mojib-Yezdani R, Otto M, et al. Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis. PLoS One. 2014;9(4):e88680.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Senel M, Mojib-Yezdani F, Braisch U, Bachhuber F, Lewerenz J, Ludolph AC, et al. CSF free light chains as a marker of intrathecal immunoglobulin synthesis in multiple sclerosis: a blood-CSF barrier related evaluation in a large cohort. Front Immunol. 2019;10:641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwenkenbecher P, Konen FF, Wurster U, Jendretzky KF, Gingele S, Sühs KW, et al. The persisting significance of oligoclonal bands in the dawning era of kappa free light chains for the diagnosis of multiple sclerosis. Int J Mol Sci. 2018;19(12):3796.

    Article  PubMed Central  Google Scholar 

  46. Berek K, Bsteh G, Auer M, Di Pauli F, Grams A, Milosavljevic D, et al. Kappa-free light chains in CSF predict early multiple sclerosis disease activity. Neurol Neuroimmunol Neuroinflamm. 2021; https://doi.org/10.1212/NXI.0000000000001005.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mayo Clinic Labs. KCSF—clinical: immunoglobulin kappa free light chain, spinal fluid. https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/65572. Accessed 15 Sept 2021.

  48. Comabella M, Craig DW, Morcillo-Suárez C. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol. 2009;66:972–8.

    Article  PubMed  Google Scholar 

  49. Thebault S, Abdoli M, Fereshtehnejad SM, Tessier D, Tabard-Cossa V, Freedman MS. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci Rep. 2020;10(1):1–1.

    Article  Google Scholar 

  50. Bushnell SE, Zhao Z, Stebbins CC. Serum IL-17F does not predict poor response to IM IFNβ-1a in relapsing-remitting MS. Neurology. 2012;79:531–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanz Diaz CT, de las Heras Flórez S, Carretero Perez M, Hernández Pérez MÁ, Martín García V. Evaluation of kappa index as a tool in the diagnosis of multiple sclerosis: implementation in routine screening procedure. Front Neurol. 2012;12:1259.

    Google Scholar 

  52. Simon R. Sensitivity, specificity, PPV, and NPV for predictive biomarkers. J Natl Cancer Inst. 2015;107(8):djv153. https://doi.org/10.1093/jnci/djv153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2020;21(17):6020. https://doi.org/10.3390/ijms21176020.

    Article  CAS  Google Scholar 

  54. Stilund M, Gjelstrup MC, Petersen T, Møller HJ, Rasmussen PV, Christensen T. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PLoS One. 2015;10(4):e119681.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kaplan B, Aizenbud BM, Golderman S, Yaskariev R, Sela BA. Free light chain monomers in the diagnosis of multiple sclerosis. J Neuroimmunol. 2010;229:263–71.

    Article  CAS  PubMed  Google Scholar 

  56. Durante L, Zaaraoui W, Rico A. Intrathecal synthesis of IgM measured after a first demyelinating event suggestive of multiple sclerosis is associated with subsequent MRI brain lesion accrual. Mult Scler. 2012;18:587–91.

    Article  CAS  PubMed  Google Scholar 

  57. Ferraro D, Simone AM, Bedin R. Cerebrospinal fluid oligoclonal IgM bands predict early conversion to clinically definite multiple sclerosis in patients with the clinically isolated syndrome. J Neuroimmunol. 2013;257:76–81.

    Article  CAS  PubMed  Google Scholar 

  58. Stilund M, Reuschlein AK, Christensen T, Møller HJ, Rasmussen PV, Petersen T. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS One. 2014;9(6):e98588. https://doi.org/10.1371/journal.pone.0098588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khademi M, Kockum I, Andersson ML. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult Scler. 2012;17:335–43.

    Article  Google Scholar 

  60. Zhong X, Wang H, Dai Y. Cerebrospinal fluid levels of CXCL13 are elevated in neuromyelitis optica. J Neuroimmunol. 2012;240–241:104–8.

    Google Scholar 

  61. Schmidt C, Plate A, Angele B. A prospective study on the role of CXCL13 in Lyme neuroborreliosis. Neurology. 2013;76:1051–8.

    Article  Google Scholar 

  62. Takano R, Misu T, Takahashi T, Sato S, Fujihara K, Itoyama Y. Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology. 2012;75:208–16.

    Article  Google Scholar 

  63. Hauser SL, Waubant E, Arnold DL. B‑cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2013;358:676–88.

    Article  Google Scholar 

  64. Naismith RT, Piccio L, Lyons JA. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology. 2012;74:1860–7.

    Article  Google Scholar 

  65. Gnanapavan S, Grant D, Illes-Toth E, Lakdawala N, Keir G, Giovannoni G. Neural cell adhesion molecule—description of a CSF ELISA method and evidence of reduced levels in selected neurological disorders. J Neuroimmunol. 2010;225:118–22.

    Article  CAS  PubMed  Google Scholar 

  66. Ragheb S, Li Y, Simon K, VanHaerents S, Galimberti D, De Riz M. Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid. Mult Scler. 2011;17(7):819–29. https://doi.org/10.1177/1352458511398887.

    Article  CAS  PubMed  Google Scholar 

  67. Khademi M, Kockum I, Andersson ML, Iacobaeus E, Brundin L, Sellebjerg F. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult Scler. 2011;17(3):335–43.

    Article  CAS  PubMed  Google Scholar 

  68. Dobson R, Topping J, Davis A, Thompson E, Giovannoni G. Cerebrospinal fluid and urinary biomarkers in multiple sclerosis. Acta Neurol Scand. 2013;128(5):321–7.

    CAS  PubMed  Google Scholar 

  69. Cenit MD, Blanco-Kelly F, de las Heras V. Glypican 5 is an interferon-beta response gene: a replication study. Mult Scler. 2009;15:913–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation. 2012;9:93. https://doi.org/10.1186/1742-2094-9-93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood. 2004;104(10):3021–7.

    Article  CAS  PubMed  Google Scholar 

  72. Romme Christensen J, Bornsen L, Khademi M, Olsson T, Jensen PE, Sorensen PS. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. Mult Scler. 2013;19(7):877–84.

    Article  PubMed  Google Scholar 

  73. Bahlo M, Booth DR, Broadley S, Brown MA, Foote SJ, Griffiths LR, et al. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009;41(7):824–8.

    Article  CAS  Google Scholar 

  74. Schwartz ES, Chapman BP, Duberstein PR, Weinstock-Guttman B, Benedict RH. The NEO-FFI in multiple sclerosis: internal consistency, factorial validity, and correspondence between self and informant reports. Assessment. 2011;18(1):39–49.

    Article  PubMed  Google Scholar 

  75. The ANZgene Consortium. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009;41:824–8.

    Article  Google Scholar 

  76. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B‑cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):66–8.

    Article  Google Scholar 

  77. Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge and future outlook. Eur Neurol. 2014;72(3–4):32–41.

    Google Scholar 

  78. Pilz G, Sakic I, Wipfler P, Kraus J, Haschke-Becher E, Hitzl W, et al. Chemokine CXCL13 in serum, CSF and blood-CSF barrier function: evidence of compartment restriction. Fluids Barriers CNS. 2020;17(1):7. https://doi.org/10.1186/s12987-020-0170-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Canwell B, Bar-Or A, Arnold DL. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol. 2011;10:436–45.

    Article  Google Scholar 

  80. Lovato L, Willis SN, Rodig SJ, Caron T, Almendinger SE, Howell OW, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain. 2011;134(2):34–41.

    Article  Google Scholar 

  81. Agah E, Zardoui A, Saghazadeh A, Ahmadi M, Tafakhori A, Rezaei N. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2018;13(1):e190252. https://doi.org/10.1371/journal.pone.0190252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14(4):406–19.

    Article  CAS  PubMed  Google Scholar 

  83. Mowry EM, Waubant E, McCulloch CE. Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis. Ann Neurol. 2012;72:234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harris S, Comi G, Cree BAC, Arnold DL, Steinman L, Sheffield JK, et al. Plasma neurofilament light chain concentrations as a biomarker of clinical and radiologic outcomes in relapsing multiple sclerosis: post hoc analysis of phase 3 ozanimod trials. Eur J Neurol. 2021;28(11):3722–30. https://doi.org/10.1111/ene.15009.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ingram G, Hakobyan S, Hirst CL, Harris CL, Pickersgill TP, Cossburn MD, et al. Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain. 2010;133(6):1602–11.

    Article  PubMed  Google Scholar 

  87. Pilz G, Harrer A, Oppermann K, Wipfler P, Golaszewski S, Afazel S, et al. Molecular evidence of transient therapeutic effectiveness of natalizumab despite high-titre neutralizing antibodies. Mult Scler. 2012;18(4):506–9. https://doi.org/10.1177/1352458511423650.

    Article  CAS  PubMed  Google Scholar 

  88. Comi G, Kappos L, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019;18(11):1009–20. https://doi.org/10.1016/S1474-4422(19)30239-X.

    Article  CAS  PubMed  Google Scholar 

  89. Kappos L, Fox RJ, Burcklen M, Freedman MS, Havrdová EK, Hennessy B, et al. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: a randomized clinical trial. JAMA Neurol. 2021;78(5):558–67. https://doi.org/10.1001/jamaneurol.2021.0405.

    Article  PubMed  Google Scholar 

  90. Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383(6):546–57. https://doi.org/10.1056/NEJMoa1917246.

    Article  CAS  PubMed  Google Scholar 

  91. Wipfler P, Harrer A, Pilz G, Oppermann K, Afazel S, Haschke-Becher E, et al. Natalizumab saturation: biomarker for individual treatment holiday after natalizumab withdrawal? Acta Neurol Scand. 2014;129(3):e12–5. https://doi.org/10.1111/ane.12182.

    Article  CAS  PubMed  Google Scholar 

  92. Harrer A, Pilz G, Einhaeupl M, Oppermann K, Hitzl W, Wipfler P, et al. Lymphocyte subsets show different response patterns to in vivo bound natalizumab—a flow cytometric study on patients with multiple sclerosis. PLoS One. 2012;7(2):e31784. https://doi.org/10.1371/journal.pone.0031784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borros Arneth.

Ethics declarations

Conflict of interest

B. Arneth and J. Kraus declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arneth, B., Kraus, J. Experimental laboratory biomarkers in multiple sclerosis. Wien Med Wochenschr 172, 346–358 (2022). https://doi.org/10.1007/s10354-022-00920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-022-00920-7

Keywords

Navigation