Skip to main content
Log in

Hashimoto Thyreoiditis, therapeutische Optionen und extrathyreoidale Assoziationen – ein aktueller Überblick

Hashimoto thyroiditis, therapeutic options and extrathyroidal options – an up-to-date overview

  • themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die Hashimoto Thyreoiditis ist eine der häufigsten organspezifischen Autoimmunerkrankungen des Menschen mit konsekutiver Organdestruktion und folglich die häufigste Ursache einer primären Hypothyreose in ausreichend jodversorgten Gebieten. Immunpathogenetisch nehmen die CD4+ T‑Zellen und ihre Differenzierungen eine Schlüsselrolle ein. Ätiologisch Einfluss haben genetische, aber auch Umweltfaktoren, existentielle Faktoren (weibliches Geschlecht) und auch der Darm und die Darmflora. Zur Diagnosestellung benötigt werden eine ausführliche Anamnese, Sonographie und laborchemische Bestimmung der Schilddrüsenfunktion und Schilddrüsenantikörper. Bei laborchemischer Hypothyreose wird das fehlende Hormon durch synthetisch hergestelltes Levothyroxin ersetzt, mit besonderem Augenmerk auf Lebensphasen mit Mehrbedarf wie zum Beispiel Schwangerschaft. Ursache für eine persistierende Beschwerdesymptomatik trotz laborchemisch euthyreoter Funktionslage unter Substitution kann einerseits eine Fehlzuordnung der Beschwerden (Co-Morbiditäten wie z. B. Vorliegen weiterer Autoimmunerkrankungen, chronische Überlastung, psychiatrische Erkrankungen), Mangel an Vitamin- und Spurenelementen, aber auch pharmakokinetische und pharmakogenomische Eigenschaften der Levothyroxinmedikation sein. Andererseits werden Resistenzen, Transport- und Konversionsstörung von Schilddrüsenhormon auf molekularbiologischer Ebene durch endogene Störungen wie Insulinresistenz und Nebenniereninsuffizienz diskutiert. Auch die Einflüsse der Schilddrüse auf die Psyche und umgekehrt scheinen mannigfaltig und auf vielen Ebenen stattzufinden. Es bedarf noch vieler großer randomisierter Studien und biochemischer, molekularbiologischer, genetischer Untersuchungen und Forschung im Bereich des Neuroimaging, um die komplexen Zusammenhänge zu klären.

Summary

Hashimoto’s thyroiditis is one of the most common organspecific autoimune diseases and the most frequent cause of hypothyroidism in areas with sufficient iodine supply. Excessively stimulated T cells CD4+ and their differentiated cells are known to play a key role in the pathogenesis. It is currently accepted that on the one hand genetic susceptibility, environmental factors, existential factors (gender difference) play an important role, on the other hand gut and intestinal microbiota seem to contribute to its development too. Diagnosis requires a detailed medical history, sonography, and blood analysis of thyroid function and thyroid antibodies. In case of an overt or subclinical hypothyroidism long-term or lifelong levothyroxine replacement may be needed, with a special focus on phases with an additional demand like during pregnancy. There are multifactorial reasons for poor response to therapy despite normal TSH levels in blood sampling like co-morbidities (other organspecific autoimmune diseases, psychiatric diseases), lack of vitamin and trace elements. Pharmacogenomic and pharmacokinetic factors may impact on levothyroxine bioavailability, also thyroid hormone resistance and transport- or conversion disorder due to insulin resistance or adrenal insufficiency for example. The relations between thyroid function, mental status and psychiatric disorders seem to be complex and the mechanisms underlying the interactions remain to be clarified. Continuing research in biochemical, genetic and neuroimaging fields are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):391–7. https://doi.org/10.1016/j.autrev.2014.01.007.

    Article  CAS  PubMed  Google Scholar 

  2. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286–95. https://doi.org/10.1016/S2213-8587(14)70225-6.

    Article  CAS  PubMed  Google Scholar 

  3. Weetman AP, McGregor AM. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev. 1994;15(6):788–830.

    CAS  PubMed  Google Scholar 

  4. Pyzik A, Grywalska EJ, Matyjaszek-Matuszek B, et al. Immune disorders in Hashimoto’s Thyroiditis: what do we know so far? Immunol Res. 2015; https://doi.org/10.1155/2015/979167.

    Article  Google Scholar 

  5. Wiersinga WM. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol Metab (Seoul). 2016;31(2):213–22. https://doi.org/10.3803/EnM.2016.31.2.213.

    Article  CAS  Google Scholar 

  6. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80.

    Article  CAS  Google Scholar 

  7. Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, Wang BM. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015;21(1):102–11. https://doi.org/10.3748/wjg.v21.i1.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mori K, Nakagawa Y, Ozaki H. Does the gut microbiota trigger Hashimoto’s thyroiditis? Discov Med. 2012;14(78):321–6.

    PubMed  Google Scholar 

  9. Campbell AW. Autoimmunity and the gut. Autoimmune Dis. 2014; https://doi.org/10.1155/2014/152428.

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Groot L, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(8):2543–65. https://doi.org/10.1210/jc.2011-2803.

    Article  CAS  PubMed  Google Scholar 

  11. Alexander EK, Pearce EN, Brent GA, et al. 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315–89. https://doi.org/10.1089/thy.2016.0457. Erratum in: Thyroid. 2017 Sep;27(9):1212. PubMed PMID: 28056690..

    Article  PubMed  Google Scholar 

  12. Lazarus J, Brown RS, Daumerie C, et al. 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):76–94. https://doi.org/10.1159/000362597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maraka S, Ospina NM, O’Keeffe DT, et al. Subclinical hypothyroidism in pregnancy: a systematic review and meta-analysis. Thyroid. 2016;26(4):580–90. https://doi.org/10.1089/thy.2015.0418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bektas Uysal H, Kaohsiung AM. Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. J Med Sci. 2016;32(8):427–33. https://doi.org/10.1016/j.kjms.2016.06.006.

    Article  Google Scholar 

  15. Fjaellegaard K, Kvetny J, Allerup PN, Bech P, Ellervik C. Well-being and depression in individuals with subclinical hypothyroidism and thyroid autoimmunity—a general population study. Nord J Psychiatry. 2015;69(1):73–8. https://doi.org/10.3109/08039488.2014.929741.

    Article  PubMed  Google Scholar 

  16. Krysiak R, Drosdzol-Cop A, Skrzypulec-Plinta V, Okopien B. Sexual function and depressive symptoms in young women with thyroid autoimmunity and subclinical hypothyroidism. Clin Endocrinol (oxf). 2016;84(6):925–31. https://doi.org/10.1111/cen.12956.

    Article  CAS  Google Scholar 

  17. Dew R, Okosieme O, Dayan C, et al. Clinical, behavioural and pharmacogenomic factors influencing the response to levothyroxine therapy in patients with primary hypothyroidism-protocol for a systematic review. Syst Rev. 2017;6(1):60. https://doi.org/10.1186/s13643-017-0457-z.Review.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol. 2014;170(6):R241–R52. https://doi.org/10.1530/EJE-14-0047.

    Article  CAS  PubMed  Google Scholar 

  19. Andersen SL, Olsen J, Wu CS, Laurberg P. Smoking reduces the risk of hypothyroidism and increases the risk of hyperthyroidism: evidence from 450,842 mothers giving birth in Denmark. Clin Endocrinol (Oxf). 2014;80(2):307–14. https://doi.org/10.1111/cen.12279.

    Article  Google Scholar 

  20. Carlé A, Bülow Pedersen I, Knudsen N. Smoking cessation is followed by a sharp but transient rise in the incidence of overt autoimmune hypothyroidism—a population-based, case-control study. Clin Endocrinol (Oxf). 2012;77(5):764–72. https://doi.org/10.1111/j.1365-2265.2012.04455.x.

    Article  CAS  Google Scholar 

  21. Carlé A, Pedersen IB, Knudsen N. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: a population-based case-control study. Eur J Endocrinol. 2012;167(4):483–90. https://doi.org/10.1530/EJE-12-0356.

    Article  CAS  PubMed  Google Scholar 

  22. Gärtner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Seleniumsupplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002;87(4):1687–91.

    Article  Google Scholar 

  23. Duntas LH, Mantzou E. Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur J Endocrinol. 2003;184(4):389–93.

    Article  Google Scholar 

  24. Turker O, Kumanlioglu K, Karapolat I, Dogan I. Selenium treatment in autoimmune thyroiditis: 9‑month follow-up with variable doses. J Endocrinol. 2006;190(1):151–6.

    Article  CAS  Google Scholar 

  25. Karanikas G, Schuetz M, Kontur S, et al. No immunological benefit of selenium in consecutive patients with autoimmune thyroiditis. Thyroid. 2008;18(1):7–12. https://doi.org/10.1089/thy.2007.0127.

    Article  CAS  PubMed  Google Scholar 

  26. Nacamulli D, Mian C, Petricca D, et al. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clin Endocrinol (Oxf). 2010;73(4):535–9. https://doi.org/10.1111/j.1365-2265.2009.03758.x.

    Article  CAS  Google Scholar 

  27. Eskes SA, Endert E, Fliers E, et al. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol (Oxf). 2014;80(3):444–51. https://doi.org/10.1111/cen.12284.

    Article  CAS  Google Scholar 

  28. Wu Q, Rayman MP, Lv H, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab. 2015;100(11):4037–47. https://doi.org/10.1210/jc.2015-2222.

    Article  CAS  PubMed  Google Scholar 

  29. Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68. https://doi.org/10.1016/S0140-6736(11)61452-9.

    Article  CAS  PubMed  Google Scholar 

  30. van Zuuren EJ, Albusta AY, Fedorowicz Z, Carter B, Pijl H. Selenium supplementation for Hashimoto’s thyroiditis: summary of a Cochrane Systematic Review. Eur Thyroid J. 2014;3(1):25–31. https://doi.org/10.1159/000356040.

    Article  CAS  PubMed  Google Scholar 

  31. Hu S, Rayman MP. Multiple nutritional factors and the risk of Hashimoto’s thyroiditis. Thyroid. 2017;27(5):597–610. https://doi.org/10.1089/thy.2016.0635.

    Article  CAS  PubMed  Google Scholar 

  32. Liontiris MI, Mazokopakis EE. A concise review of Hashimoto thyroiditis (HT)and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients. Points that need more investigation. Hell J Nucl Med. 2017;20(1):51–56. https://doi.org/10.1967/s002449910507. (Epub 2017 Mar 20. Review)

    Article  PubMed  Google Scholar 

  33. Luo Y, Kawashima A, Ishido Y, Yoshihara A, Oda K, Hiroi N, Ito T, Ishii N, Suzuki K. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int J Mol Sci. 2014;15(7):12895–912. https://doi.org/10.3390/ijms150712895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miranda DM, Massom JN, Catarino RM, Santos RT, Toyoda SS, Marone MM, Tomimori EK, Monte O. Impact of nutritional iodine optimization on rates of thyroid hypoechogenicity and autoimmune thyroiditis: a cross-sectional, comparative study. Thyroid. 2015;25(1):118–24. https://doi.org/10.1089/thy.2014.0182.

    Article  CAS  PubMed  Google Scholar 

  35. Indolfi G, Stagi S, Bartolini E, Salti R, de Martino M, Azzari C, Resti M. Thyroid function and anti-thyroid autoantibodies in untreated children with vertically acquired chronic hepatitis C virus infection. Clin Endocrinol (Oxf). 2008;68(1):117–21.

    Article  Google Scholar 

  36. Kahaly GJ, Frommer L, Schuppan D. Celiac disease and glandular autoimmunity. Nutrients. 2018;10(7):E814. https://doi.org/10.3390/nu10070814.

    Article  CAS  PubMed  Google Scholar 

  37. Lerner A, Jeremias P, Matthias T. Gut-thyroid axis and celiac disease. Endocr Connect. 2017;6(4):R52–R8. https://doi.org/10.1530/EC-17-0021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lye Ch’ng C, Keston Jones M, Kingham JGC. Celiac Disease an Autoimmune Thyroid disease. Clin Med Res. 2007;5(3):184–92. https://doi.org/10.3121/cmr.2007.738.

    Article  Google Scholar 

  39. Sun X, Lu L, Yang R, Li Y, Shan L, Wang Y. Increased incidence of thyroid disease in patients with celiac disease: a systematic review and meta-analysis. PLoS ONE. 2016;11(12):e168708. https://doi.org/10.1371/journal.pone.0168708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bektas Uysal H, Ayhan M. Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. Kaohsiung J Med Sci. 2016;32(8):427–33. https://doi.org/10.1016/j.kjms.2016.06.006.

    Article  PubMed  Google Scholar 

  41. Djurovic M, Pereira AM, Smit JWA, Vasovic O, Damjanovic S, Jemuovic Z, Pavlovic D, Miljic D, Pekic S, Stojanovic M, Asanin M, Krljanac G, Petakov M. Cognitive functioning and quality of life in patients with Hashimoto thyroiditis on long-term levothyroxine replacement. Endocrine. 2018; https://doi.org/10.1007/s12020-018-1649-6.

    Article  PubMed  Google Scholar 

  42. Kramer CK, von Mühlen D, Kritz-Silverstein D, Barrett-Connor E. Treated hypothyroidism, cognitive function, and depressed mood in old age: the Rancho Bernardo Study. Eur J Endocrinol. 2009;161(6):917–21. https://doi.org/10.1530/EJE-09-0606.

    Article  CAS  PubMed  Google Scholar 

  43. Dayan CM, Panicker V. Hypothyroidism and depression. Eur Thyroid J. 2013;2(3):168–79. https://doi.org/10.1159/000353777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leyhe T, Müssig K. Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain Behav Immun. 2014;41:261–6. https://doi.org/10.1016/j.bbi.2014.03.008.

    Article  CAS  PubMed  Google Scholar 

  45. De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, Hrsg. Endotext. South Dartmouth (MA): MDText.com. 2000. http://www.ncbi.nlm.nih.gov/books/NBK278943/. Zugegriffen: 2. September 2015

    Google Scholar 

  46. Jahagirdar V, McNay EC. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis. 2012;27(2):101–11. https://doi.org/10.1007/s11011-012-9291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hage MP, Azar ST. The link between thyroid function and depression. J Thyroid Res. 2012; https://doi.org/10.1155/2012/590648.

    Article  PubMed  Google Scholar 

  48. Panicker V, Saravanan P, Vaidya B, Evans J, Hattersley AT, Frayling TM, Dayan CM. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94(5):1623–9. https://doi.org/10.1210/jc.2008-1301.

    Article  CAS  PubMed  Google Scholar 

  49. Saravanan P, Simmons DJ, Greenwood R, Peters TJ, Dayan CM. Partial substitution of thyroxine (T4) with tri-iodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J Clin Endocrinol Metab. 2005;90(2):805–12.

    Article  CAS  Google Scholar 

  50. Montagna G, Imperiali M, Agazzi P, D’Aurizio F, Tozzoli R, Feldt-Rasmussen U, Giovanella L. Hashimoto’s encephalopathy: a rare proteiform disorder. Autoimmun Rev. 2016;15(5):466–76. https://doi.org/10.1016/j.autrev.2016.01.014.

    Article  PubMed  Google Scholar 

  51. Schnedl WJ, et al. Improvement of cerebral hypoperfusion with levothyroxine therapy in Hashimoto’s encephalopathy demonstrated by (99m)Tc-HMPAO-SPECT. Eur Thyroid J. 2013;2(2):116–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Demers LM, Spencer CA. NACB: laboratory support for the diagnosis and monitoring of thyroid disease. 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Petnehazy.

Ethics declarations

Interessenkonflikt

E. Petnehazy und W. Buchinger geben an, dass kein Interessenkonflikt besteht.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petnehazy, E., Buchinger, W. Hashimoto Thyreoiditis, therapeutische Optionen und extrathyreoidale Assoziationen – ein aktueller Überblick. Wien Med Wochenschr 170, 26–34 (2020). https://doi.org/10.1007/s10354-019-0691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-019-0691-1

Schlüsselwörter

Keywords

Navigation