Skip to main content
Log in

Evaluating and Modeling of the Seedling Growth Ability of Wheat Seeds as Affected by Shallow-Saline Groundwater Conditions

Bewertung und Modellierung des Keimlingswachstums von Weizensamen unter flachen, salzhaltigen Grundwasserbedingungen

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The adverse effects of shallow-saline groundwater may vary among crucial growth stages of crops by decreasing crop growth and productivity. The present study aimed to assess the germination and seedling growth ability of wheat seeds grown in four different (0.38, 2.0, 4.0, and 8.0 dSm−1) groundwater salinities (GWS) and three (30, 55, and 80 cm) groundwater depths (GWD) condition. To achieve this aim, wheat crops were grown in drainable lysimeters under rain shelter conditions until the maturity stage, and then wheat seeds were harvested from various saline groundwater conditions. Afterward, wheat seeds were germinated to identify the performance of germination and seedling growth attributes. Response surface methodology (RSM) was used to determine the optimal growing wheat seeds condition, which had high early seedling growth performance. The results showed that the seedling growth performance of wheat seeds increased with increasing GWDs, while decreased with increasing GWSs. Based on the RSM findings, we suggest that GWD and GWS should be at least 42 cm and at most 5.46 dSm−1, respectively, for sustainable higher wheat yield and seed quality. Finally, this study could provide considerable information for selecting strong and healthy wheat seeds grown under shallow saline groundwater conditions.

Zusammenfassung

Die nachteiligen Auswirkungen von flachem, salzhaltigem Grundwasser können in den verschiedenen Wachstumsstadien von Kulturpflanzen unterschiedlich sein, da sie das Wachstum und die Produktivität der Pflanzen beeinträchtigen. Ziel der vorliegenden Studie war es, die Keimung und das Wachstum von Weizensamen zu bewerten, die bei vier verschiedenen Grundwassersalzgehalten (0,38, 2,0, 4,0 und 8,0 dSm−1) und drei Grundwassertiefen (30, 55 und 80 cm) angebaut wurden. Um dieses Ziel zu erreichen, wurden Weizenkulturen in entwässerbaren Lysimetern unter Regenschutzbedingungen bis zur Reife angebaut und dann Weizensamen unter verschiedenen salzhaltigen Grundwasserbedingungen geerntet. Anschließend wurden die Weizensamen zur Keimung gebracht, um die Eigenschaften der Keimung und des Wachstums der Keimlinge zu ermitteln. Mithilfe der Response Surface Methodology (RSM) wurden die optimalen Wachstumsbedingungen für die Weizensamen ermittelt, die eine hohe Leistung beim frühen Keimlingswachstum erbrachten. Die Ergebnisse zeigten, dass die Keimlingswachstumsleistung von Weizensaatgut mit steigender Grundwassertiefe zunahm, während sie mit steigendem Grundwassersalzgehalt abnahm. Auf der Grundlage der RSM-Ergebnisse schlagen wir vor, dass Grundwassertiefe und Grundwassersalzgehalt mindestens 42 cm bzw. höchstens 5,46 dSm−1 betragen sollten, um nachhaltig höhere Weizenerträge und Saatgutqualität zu erzielen. Schließlich könnte diese Studie wichtige Informationen für die Auswahl starker und gesunder Weizensamen liefern, die unter flachen, salzhaltigen Grundwasserbedingungen angebaut werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria 1. Crop Sci 13(6):630–633

    Article  Google Scholar 

  • Alghory A, Yazar A (2018) Evaluation of net return and grain quality characteristics of wheat for various irrigation strategies under the Mediterranean climatic conditions. Agric Water Manag 203:395–404

    Article  Google Scholar 

  • Alom R, Hasan MA, Islam MR, Wang QF (2016) Germination characters and early seedling growth of wheat (Triticum aestivum L.) genotypes under salt stress conditions. J Crop Sci Biotechnol 19(5):383–392

    Article  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Çikili Y, Çiftçi CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric For 30(1):39–47

    CAS  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds, physiology of development, germination and dormancy. Springer Science & Business Media, Berlin

    Google Scholar 

  • Biabani A, Hamideh H, Mosarreza VT (2013) Salinity effect of stress on germination of wheat cultivars. Int J Agric Food Sci Technol 4:263–268

    Google Scholar 

  • Charushahi V, Bargali K, Bargali SS (2015) Influence of seed size and salt stress on seed germination and seedling growth of wheat (Triticum aestivum). Indian J Agric Sci 85(9):1134–1137

    Google Scholar 

  • FAOSTAT (2019) Food and Agriculture Organization of the United Nations, Statistics division. In, Stat. Data base. https://faostt.fao.org/. Accessed 19 Feb 2021

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize, effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Fuller MP, Hamza JH, Rihan HZ, Al Issavi M (2012) Germination of primed seed under NaCI stress in wheat. ISRN Bot 2012:167804

    Google Scholar 

  • Ghamarnia H, Farmanifard M (2014) Yield production and water-use efficiency of wheat (Triticum aestivum L.) cultivars under shallow groundwater use in semi-arid region. Arch Agron Soil Sci 60(12):1677–1700

    Article  Google Scholar 

  • Giraldo P, Benavente E, Manzano-Agugliaro F, Gimenez E (2019) Worldwide research trends on wheat and barley, a bibliometric comparative analysis. Agronomy 9(7):352

    Article  Google Scholar 

  • Gowing JW, Rose DA, Ghamarnia H (2009) The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater. Agric Water Manag 96(3):517–524

    Article  Google Scholar 

  • Guo QE, Ma ZM, Wang YQ, Nan LL, Li QL (2010) Effect of water table on soil salt ions transfer and variation. J Irrig Drain 29:64–67 (in Chinese with English abstract)

    Google Scholar 

  • Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA (2018) Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant 40(4):68

    Article  Google Scholar 

  • ISTA (1999) International rules for seed testing. Rules 1999. Seed Science and Technology, (Suppl)

    Google Scholar 

  • Jaleel A, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  Google Scholar 

  • Kalaji H, Nalborczyk E (1991) Gas exchange of barley seedlings growing under salinity stress. Photosynthetica (Praha) 25(2):197–202

    Google Scholar 

  • Katerji N, Van Hoorn JW, Fares C, Hamdy A, Mastrorilli M, Oweis T (2005) Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance. Agric Water Manag 75(2):85–91

    Article  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Li X, Xia J, Zhao X, Chen Y (2019) Effects of planting Tamarix chinensis on shallow soil water and salt content under different groundwater depths in the Yellow River Delta. Geoderma 335:104–111

    Article  CAS  Google Scholar 

  • Montgomery DC (2008) Design and analysis of experiments, 7th edn. Wiley, Hoboken

    Google Scholar 

  • Mostafavi K, Geive HS, Dadresan M, Zarabi M (2011) Effects of drought stress on germination indices of corn hybrids (Zea mays L.). Int J Agrisci 1(1):10–18

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Plaut Z, Butow BJ, Blumenthal CS, Wrigley CW (2004) Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crop Res 86(2–3):185–198

    Article  Google Scholar 

  • Rahimipetroudi I, Rashid K, Yang JB, Dong SK (2020) Use of response surface methodology to optimize NOx emissions and efficiency of W‑type regenerative radiant tube burner under plasma-assisted combustion. J Clean Prod 244:118626

    Article  CAS  Google Scholar 

  • Saberali SF, Moradi M (2019) Effect of salinity on germination and seedling growth of Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethum graveolens. J Saudi Soc Agric Sci 18(3):316–323

    Google Scholar 

  • Saleh AM, Madany MMY (2015) Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol Biochem 88:27–35

    Article  CAS  Google Scholar 

  • Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair MR, Prasad PVV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops, impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705

    Article  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Thakur M, Sharma AD (2005) Salt-stress-induced proline accumulation in germinating embryos, evidence suggesting a role of proline in seed germination. J Arid Environ 62(3):517–523

    Article  Google Scholar 

  • TUIK (2020) Turkish Statistical Institute, crop production statistics. https://www.turkstat.gov.tr/PreTablo.do?alt_id=1001. Accessed 15 Feb 2021

  • Van Gastel AJG, Bishaw Z, Gregg BR (2002) Wheat seed production. FAO Corporate Document. Repository, vol 567

    Google Scholar 

  • Wijewardana C, Reddy KR, Krutz LJ, Gao W, Bellaloui N (2019) Poor seed quality, reduced germination, and decreased seedling vigor in soybean is linked to exposure of the maternal lines to drought stress (BioRxiv 590059)

    Book  Google Scholar 

  • Wysocki DJ, Horneck DA, Lucther LK, Hart JM, Petrie SE, Corp MK (2006) Winter wheat in continious cropping systems (Intermediate precipitation zone). Oregon State Universty, vol FG 83

    Google Scholar 

  • Xia J, Lang Y, Zhao Q, Liu P, Su L (2021) Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats. Sci Total Environ 761:143221

    Article  CAS  Google Scholar 

  • Xia J, Zhang S, Zhao X, Liu J, Chen Y (2016) Effects of different groundwater depths on the distribution characteristics of soil-Tamarix water contents and salinity under saline mineralization conditions. CATENA 142:166–176

    Article  CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plantarum 162(1):2–12

    Article  CAS  Google Scholar 

  • Zhao M, Zhang H, Yan H, Qiu L, Baskin CC (2018) Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci 9:234

    Article  Google Scholar 

  • Zhao YY, Lu ZH, Xia JB, Liu JT (2015) Root architecture and adaptive strategy of 3 shrubs in Shell Bay in Yellow River Delta. Acta Ecol Sinica 35:1688–1695

    Google Scholar 

  • Zimmermann I, Fleige H, Horn R (2017) Longtime effects of deep groundwater extraction management on water table levels in surface aquifers. J Soils Sediments 17(1):133–143

    Article  Google Scholar 

Download references

Funding

This study was funded by the Scientific and Technical Research Council of Turkey (TUBITAK) under project number TOVAG 1160492. We thank TUBITAK for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sait Kiremit.

Ethics declarations

Conflict of interest

M.S. Kiremit, H. Arslan, İ. Sezer and H. Akay declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiremit, M.S., Arslan, H., Sezer, İ. et al. Evaluating and Modeling of the Seedling Growth Ability of Wheat Seeds as Affected by Shallow-Saline Groundwater Conditions. Gesunde Pflanzen 74, 357–369 (2022). https://doi.org/10.1007/s10343-021-00614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00614-x

Keywords

Schlüsselwörter

Navigation