Skip to main content

Advertisement

Log in

Wood-decaying fungi in the forest: conservation needs and management options

  • Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Wood-decaying fungi are essential for the functioning of forest ecosystems. They provide habitat for many other organisms and enable the regeneration of forests throughout the world. Since wood decomposition is a decisive process in nutrient recycling, soil formation and the carbon budget of forest ecosystems, it is receiving increasing attention from forest ecologists, pathologists and managers. Research has focussed on the factors driving the species-richness of wood-decomposing organisms and is moving on to analyse the effects of this species-richness on ecosystem functioning. Coarse woody debris (CWD) and its associated wood-decaying organisms have been drastically reduced in abundance and diversity by forestry and so these features often have potential as conservation indicators. Protective measures at a landscape level are needed for threatened wood-inhabiting fungi. These include restricting salvage operations in windthrow stands, actively encouraging the accumulation of deadwood in forests, and facilitating decay in standing trees by inoculating them with fungi. Here, we aim to collect and summarize recently produced work on deadwood ecology, pointing out research gaps and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afyon A, Konuk M, Yagiz D, Helfer S (2005) A study of wood decaying macrofungi of the western Black Sea Region, Turkey. Mycotaxon 93:319–322

    Google Scholar 

  • Albrecht L (1991) Die Bedeutung des toten Holzes im Wald. Forstwissenschaftliches Centralblatt 110:106–113

    Google Scholar 

  • Albrecht L (1992) The importance of natural forest reserves for species protection in woodlands. Forstwissenschaftliches Centralblatt 111:214–224

    Google Scholar 

  • Alexander KNA (1998) The links between forest history and biodiversity: the invertebrate fauna of ancient pasture woodland in the British Isles and its conservation. In: Kirby K, Watkins C (eds) The ecological history of European forests. CAB International, Wallingford, pp 73–80

    Google Scholar 

  • Alkaslassy E (2005) Abundance of plethodontid salamanders in relation to coarse woody debris in a low elevation mixed forest of the western cascades. Northwest Sci 79:156–163

    Google Scholar 

  • Allen RB, Buchanan PK, Clinton PW, Cone AJ (2000) Composition and diversity of fungi on decaying logs in a New Zealand temperate beech (Nothofagus) forest. Can J For Res 30:1025–1033

    Google Scholar 

  • Ammann M (2006) Schutzwirkung abgestorbener Bäume gegen Naturgefahren. Dissertation ETH Zürich, CH, 189 pp http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss&nr=16638

  • Ammer U (1991) Konsequenzen aus den Ergebnissen der Totholzforschung für die forstliche Praxis. Forstwissenschaftliches Centralblatt 110:149–157

    Google Scholar 

  • Andersson LI, Hytteborn H (1991) Bryophytes and decaying wood—a comparison between managed and natural forest. Holarctic Ecol 14:121–130

    Google Scholar 

  • Andersson R, Östlund L (2004) Spatial patterns, density changes and implications on biodiversity for old trees in the boreal landscape of northern Sweden. Biol Conserv 118:443–453. doi:10.1016/j.biocon.2003.09.020

    Google Scholar 

  • Angelstam PK, Butler R, Lazdinis M, Mikusinski G, Roberge JM (2003) Habitat thresholds for focal species at multiple scales and forest biodiversity conservation—dead wood as an example. Ann Zool Fenn 40:473–482

    Google Scholar 

  • Aulen G (1991) Increasing insect abundance by killing deciduous trees—a method of improving the food situation for endangered woodpeckers. Holarctic Ecol 14:68–80

    Google Scholar 

  • Aune K, Jonsson BG, Moen J (2005) Isolation and edge effects among woodland key habitats in Sweden: is forest policy promoting fragmentation? Biol Conserv 124:89–95. doi:10.1016/j.biocon.2005.01.015

    Google Scholar 

  • Bader P, Jansson S, Jonsson BG (1995) Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol Conserv 72:355–362. doi:10.1016/0006-3207(94)00029-P

    Google Scholar 

  • Baker FA, Daniels SE, Parks CA (1996) Inoculating trees with wood decay fungi with rifle and shotgun. West J Appl For 11:13–15

    Google Scholar 

  • Baum S, Sieber TN, Schwarze FWMR, Fink S (2003) Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycol Prog 2:141–148. doi:10.1007/s11557-006-0052-5

    Google Scholar 

  • Baur P, Bernath K, Holthausen N, Roschewitz A (2003) LOTHAR Ökonomische Auswirkungen des Sturms Lothar im Schweizer Wald, Teil I. Einkommens- und Vermögenswirkungen für die Waldwirtschaft und gesamtwirtschaftliche Beurteilung des Sturms. Umwelt-Materialien Nr. 157. Bundesamt für Umwelt, Wald und Landschaft, Bern

  • Berg Å, Ehnström B, Gustasson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conserv Biol 8:718–731. doi:10.1046/j.1523-1739.1994.08030718.x

    Google Scholar 

  • Berg Å, Gardenfors U, Hallingback T, Noren M (2002) Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden—analyses of data from a national survey. Biodivers Conserv 11:1479–1503. doi:10.1023/A:1016271823892

    Google Scholar 

  • Berglund H, Jonsson BG (2001) Predictability of plant and fungal species-richness of old-growth boreal forest islands. J Veg Sci 12:857–866

    Google Scholar 

  • Berglund H, Jonsson BG (2003) Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biol Conserv 112:319–328. doi:10.1016/S0006-3207(02)00329-4

    Google Scholar 

  • Berglund H, Jonsson BG (2005) Verifying an extinction debt among lichens and fungi in Northern Swedish boreal forests. Conserv Biol 19:338–348. doi:10.1111/j.1523-1739.2005.00550.x

    Google Scholar 

  • Berglund H, Edman M, Ericson L (2005) Temporal variation of wood-fungi diversity in boreal old-growth forests: implications for monitoring. Ecol Appl 15:970–982

    Google Scholar 

  • Bobiec A, van der Burgt H, Meijer K, Zuyderduyn C, Haga J, Vlaanderen B (2000) Rich deciduous forests in Bialowieza as a dynamic mosaic of developmental phases: premises for nature conservation and restoration management. For Ecol Manage 130:159–175. doi:10.1016/S0378-1127(99)00181-4

    Google Scholar 

  • Boddy L (1994) Latent decay fungi—the hidden foe? Arboric J 18:113–135

    Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194. doi:10.1111/j.1574-6941.2000.tb00683.x

    PubMed  CAS  Google Scholar 

  • Boddy L, Owens EM, Chapela IH (1989) Small-scale variation in decay-rate within logs one year after felling—effect of fungal community structure and moisture-content. FEMS Microbiol Ecol 62:173–184. doi:10.1111/j.1574-6968.1989.tb03691.x

    Google Scholar 

  • Bouget C, Duelli P (2004) The effects of windthrow on forest insect communities: a literature review. Biol Conserv 118:281–299. doi:10.1016/j.biocon.2003.09.009

    Google Scholar 

  • Bowman JC, Sleep D, Forbes GJ, Edwards M (2000) The association of small mammals with coarse woody debris at log and stand scales. For Ecol Manage 129:119–124. doi:10.1016/S0378-1127(99)00152-8

    Google Scholar 

  • Brandeis TJ, Newton M, Filip GM, Cole EC (2002) Cavity-nester habitat development in artificially made Douglas-fir snags. J Wildl Manage 66:625–633

    Google Scholar 

  • Brang P, Moran J, Puttonen P, Vyse A (2003) Regeneration of Picea engelmannii and Abies lasiocarpa in high-elevation forests of south-central British Columbia depends on nurse logs. For Chron 79:273–279

    Google Scholar 

  • Bratton JH (2003) Habitat management to conserve fungi: a literature review. Countryside Council for Wales, Natural Science Report, Nr 03/10/1

  • Buchanan PK, May TW (2003) Conservation of New Zealand and Australian fungi. NZ J Bot 41:407–421

    Google Scholar 

  • Bull EL, Wales BC (2001) Effects of disturbance on birds of conservation concern in eastern Oregon and Washington. Northwest Sci 75:166–173

    Google Scholar 

  • Bury RB (2004) Wildfire, fuel reduction, and herpetofaunas across diverse landscape mosaics in Northwestern forests. Conserv Biol 18:968–975. doi:10.1111/j.1523-1739.2004.00522.x

    Google Scholar 

  • Butler J, Alexander K, Green T (2002) Decaying wood: an overview of its status and ecology in the United Kingdom and continental Europe. US Forest Service, PSW-GTR-181, pp 11–19

  • Butler R, Angelstam P, Ekelund P, Schlaepfer R (2004) Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biol Conserv 119:305–318. doi:10.1016/j.biocon.2003.11.014

    Google Scholar 

  • Butts SR, McComb WC (2000) Associations of forest-floor vertebrates with coarse woody debris in managed forests of western Oregon. J Wildl Manage 64:95–104

    Google Scholar 

  • BUWAL (2004) Lothar. Rechenschaftsbericht. Materielle und finanzielle Bilanz 2000–2003. Bundesamt für Umwelt, Wald und Landschaft, Bern

  • Carey AB, Kershner J, Biswell B, de Toledo LD (1999) Ecological scale and forest development: squirrels, dietary fungi, and vascular plants in managed and unmanaged forests. Wildl Monogr 142:5–71

    Google Scholar 

  • Carmona MR, Armesto JJ, Aravena JC, Perez CA (2002) Coarse woody debris biomass in successional and primary temperate forests in Chiloe Island, Chile. For Ecol Manage 164:265–275. doi:10.1016/S0378-1127(01)00602-8

    Google Scholar 

  • Cavalli R, Mason F (eds) (2003) Tecniche di Ripristino del Legno Morto per la Conservazione delle Faune Saproxiliche. Gianluigi Arcari Editore, Mantova

  • Chambers CL, Mast JN (2005) Ponderosa pine snag dynamics and cavity excavation following wildfire in northern Arizona. For Ecol Manage 216:227–240. doi:10.1016/j.foreco.2005.05.033

    Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388. doi:10.1007/s004420050044

    Google Scholar 

  • Christensen M, Hahn K, Mountford EP, Ódor P, Standovár T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manage 210:267–282. doi:10.1016/j.foreco.2005.02.032

    Google Scholar 

  • Christie DA, Armesto JJ (2003) Regeneration microsites and tree species coexistence in temperate rain forests of Chiloe Island, Chile. J Ecol 91:776–784. doi:10.1046/j.1365-2745.2003.00813.x

    Google Scholar 

  • Clark DB, Clark DA, Brown S, Oberbauer SF, Veldkamp E (2002) Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. For Ecol Manage 164:237–248. doi:10.1016/S0378-1127(01)00597-7

    Google Scholar 

  • Coates D, Rayner ADM (1985a) Fungal population and community development in cut beech logs. I. Establishment via the aerial cut surface. New Phytol 101:153–171

    Google Scholar 

  • Coates D, Rayner ADM (1985b) Fungal population and community development in cut beech logs. II. Establishment via the buried cut surface. New Phytol 101:173–181

    Google Scholar 

  • Coates D, Rayner ADM (1985c) Fungal population and community development in cut beech logs. III. Spatial dynamics, interactions and strategies. New Phytol 101:183–198

    Google Scholar 

  • Conner RN, Miller OK, Adkisson CS (1976) Woodpecker dependence on trees infected by fungal heart rots. Wilson Bull 88:575–581

    Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of Saprotrophic Fungi. Longman, London

    Google Scholar 

  • Cornett MW, Reich PB, Puettmann KJ (1997) Canopy feedbacks and microtopography regulate conifer seedling distribution in two Minnesota conifer-deciduous forests. Ecoscience 4:353–364

    Google Scholar 

  • Cornett MW, Puettmann KJ, Frelich LE, Reich PB (2001) Comparing the importance of seedbed and canopy type in the restoration of upland Thuja occidentalis forests of northeastern Minnesota. Rest Ecol 9:386–396. doi:10.1046/j.1526-100X.2001.94008.x

    Google Scholar 

  • Crow TR, Perera AH (2004) Emulating natural landscape disturbance in forest management—an introduction. Landsc Ecol 19:231–233. doi:10.1023/B:LAND.0000030762.86156.5d

    Google Scholar 

  • Dai YC, Wei YL, Wang Z (2004) Wood-inhabiting fungi in southern China—2. Polypores from Sichuan Province. Ann Bot Fenn 41:319–329

    Google Scholar 

  • de Jong MD, Scheepens PC, Zadoks JC (1990) Risk analysis for biological control: a Dutch case study in biocontrol of Prunus serotina by the fungus Chondrostereum purpureum. Plant Dis 74:189–194

    Google Scholar 

  • Debeljak M (2006) Coarse woody debris in virgin and managed forest. Ecol Indic 6:733–742. doi:10.1016/j.ecolind.2005.08.031

    Google Scholar 

  • Delaney M, Brown S, Lugo AE, Torres-Lezama A, Quintero NB (1998) The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela. Biotropica 30:2–11. doi:10.1111/j.1744-7429.1998.tb00364.x

    Google Scholar 

  • DeLong SC, Daniels LD, Heemskerk B, Storaunet KO (2005) Temporal development of decaying log habitats in wet spruce–fir stands in east-central British Columbia. Can J For Res 35:2841–2850

    Google Scholar 

  • DeWalle DR, Buda AR, Fisher A (2003) Extreme weather and forest management in the mid-Atlantic region of the United States. North J Appl For 20:61–70

    Google Scholar 

  • Diaci J, Pisek R, Boncina A (2005) Regeneration in experimental gaps of subalpine Picea abies forest in the Slovenian Alps. Eur J For Res 124:29–36. doi:10.1007/s10342-005-0057-7

    Google Scholar 

  • Donato DC, Fontaine JB, Campbell JL, Robinson WD, Kauffman JB, Law BE (2006) Post-wildfire logging hinders regeneration and increases fire risk. Science 311:352–352. doi:10.1126/science.1122855

    PubMed  CAS  Google Scholar 

  • Dovciak M, Reich PB, Frelich LE (2003) Seed rain, safe sites, competing vegetation, and soil resources spatially structure white pine regeneration and recruitment. Can J For Res 33:1892–1904

    Google Scholar 

  • Edman M, Jonsson BG (2001) Spatial pattern of downed logs and wood-decaying fungi in an old-growth Picea abies forest. J Veg Sci 12:609–620

    Google Scholar 

  • Edman M, Gustafsson M (2003) Wood-disk traps provide a robust method for studying spore dispersal of wood-decaying basidiomycetes. Mycologia 95:553–556

    Google Scholar 

  • Edman M, Gustafsson M, Stenlid J, Ericson L (2004a) Abundance and viability of fungal spores along a forestry gradient—responses to habitat loss and isolation? Oikos 104:35–42. doi:10.1111/j.0030-1299.2004.12454.x

    Google Scholar 

  • Edman M, Gustafsson M, Stenlid J, Jonsson BG, Ericson L (2004b) Spore deposition of wood-decaying fungi: importance of landscape composition. Ecography 27:103–111. doi:10.1111/j.0906-7590.2004.03671.x

    Google Scholar 

  • Edman M, Kruys N, Jonsson BG (2004c) Local dispersal sources strongly affect colonization patterns of wood-decaying fungi on spruce logs. Ecol Appl 14:893–901

    Google Scholar 

  • Edman M, Moeller R, Ericson L (2006) Effects of enhanced tree growth rate on the decay capacities of three saprotrophic wood-fungi. For Ecol Manage 232:12–18. doi:10.1016/j.foreco.2006.05.001

    Google Scholar 

  • Edmonds RL, Agee JK, Gara RI (2000) Forest health and protection. McGraw-Hill, Boston

    Google Scholar 

  • Ehnström B (2001) Leaving dead wood for insects in boreal forests—suggestions for the future. Scand J For Res Suppl 3:91–98. doi:10.1080/028275801300090681

    Google Scholar 

  • Ekbom B, Schroeder LM, Larsson S (2006) Stand specific occurrence of coarse woody debris in a managed boreal forest landscape in central Sweden. For Ecol Manage 221:2–12. doi:10.1016/j.foreco.2005.10.038

    Google Scholar 

  • Eichrodt R (1970) Über die Bedeutung von Moderholz für die natürliche Verjüngung im subalpinen Fichtenwald. Beiheft Schw Z Forstw 45:1–122

    Google Scholar 

  • Eriksson M, Pouttu A, Roininen H (2005) The influence of windthrow area and timber characteristics on colonization of wind-felled spruces by Ips typographus (L.). For Ecol Manage 216:105–116. doi:10.1016/j.foreco.2005.05.044

    Google Scholar 

  • Eriksson M, Lilja S, Roininen H (2006) Dead wood creation and restoration burning: implications for bark beetles and beetle induced tree deaths. For Ecol Manage 231:205–213. doi:10.1016/j.foreco.2006.05.050

    Google Scholar 

  • Evans AM, Clinton PW, Allen RB, Frampton CM (2003) The influence of logs on the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. For Ecol Manage 184:251–262. doi:10.1016/S0378-1127(03)00158-0

    Google Scholar 

  • Evans HF (1997) The present position of forest entomology in Great Britain. Forestry 70:327–336. doi:10.1093/forestry/70.4.327

    Google Scholar 

  • Farris KL, Huss MJ, Zack S (2004) The role of foraging woodpeckers in the decomposition of ponderosa pine snags. Condor 106:50–59

    Google Scholar 

  • Fayt P, Machmer MM, Steeger C (2005) Regulation of spruce bark beetles by woodpeckers—a literature review. For Ecol Manage 206:1–14. doi:10.1016/j.foreco.2004.10.054

    Google Scholar 

  • Feller MC (2003) Coarse woody debris in the old-growth forests of British Columbia. Environ Rev 11:S135–S157

    Google Scholar 

  • Ferguson SH, Archibald DJ (2002) The 3/4 power law in forest management: how to grow dead trees. For Ecol Manage 169:283–292. doi:10.1016/S0378-1127(01)00766-6

    Google Scholar 

  • Ferrer A, Gilbert GS (2003) Effect of tree host species on fungal community composition in a tropical rain forest in Panama. Divers Distrib 9:455–468. doi:10.1046/j.1472-4642.2003.00039.x

    Google Scholar 

  • Filip GM, Parks CG, Baker FA, Daniels SE (2004) Artificial inoculation of decay fungi into Douglas-Fir with rifle or shotgun to produce wildlife trees in western Oregon. West J Appl For 19:211–215

    Google Scholar 

  • Fischer M, Binder M (2004) Species recognition, geographic distribution and host-pathogen relationships: a case study in a group of lignicolous basidiomycetes, Phellinus s.l. Mycologia 96:799–811

    Google Scholar 

  • Flint CG (2006) Community perspectives on spruce beetle impacts on the Kenai Peninsula, Alaska. For Ecol Manage 227:207–218. doi:10.1016/j.foreco.2006.02.036

    Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological progress. Bioscience 37:550–556

    Google Scholar 

  • Frey W, Thee P (2002) Avalanche protection of windthrow areas: a ten year comparison of cleared and uncleared starting zones. For Snow Landsc Res 77:89–107

    Google Scholar 

  • Fridman J, Walheim M (2000) Amount, structure, and dynamics of dead wood on managed forestland in Sweden. For Ecol Manage 131:23–36. doi:10.1016/S0378-1127(99)00208-X

    Google Scholar 

  • FSC (2005) Swedish FSC standard for forest certification. Endorsed by the board of directors of FSC Sweden, 050901. Accessed online 1st Nov 2005 at http://www.fsc-sweden.org/Portals/0/ Documents/ Swedish%20FSC%20standard_050907.pdf

  • Gale N (2000) The aftermath of tree death: coarse woody debris and the topography in four tropical rain forests. Can J For Res 30:1489–1493

    Google Scholar 

  • Ganey JL, Vojta SC (2005) Changes in snag populations in Northern Arizona mixed-conifer and ponderosa pine forests, 1997–2002. For Sci 51:396–405

    Google Scholar 

  • Garber SM, Brown JP, Wilson DS, Maguire DA, Heath LS (2005) Snag longevity under alternative silvicultural regimes in mixed-species forests of central Maine. Can J For Res 35:787–796

    Google Scholar 

  • Gibb H, Ball JP, Johansson T, Atlegrim O, Hjalten J, Danell K (2005) Effects of management on coarse woody debris volume and composition in boreal forests in northern Sweden. Scand J For Res 20:213–222. doi:10.1080/02827580510008392

    Google Scholar 

  • Gilbert GS, Sousa WP (2002) Host specialization among wood-decay polypore fungi in a Caribbean mangrove forest. Biotropica 34:396–404. doi:10.1111/j.1744-7429.2002.tb00553.x

    Google Scholar 

  • Gilbert GS, Ferrer A, Carranza J (2002) Polypore fungal diversity and host density in a moist tropical forest. Biodivers Conserv 11:947–957. doi:10.1023/A:1015896204113

    Google Scholar 

  • Gjerde I, Satersdal M, Rolstad J, Blom HH, Storaunet KO (2004) Fine-scale diversity and rarity hotspots in northern forests. Conserv Biol 18:1032–1042. doi:10.1111/j.1523-1739.2004.00526.x

    Google Scholar 

  • Gjerde I, Sætersdal M, Rolstad J, Storaunet KO, Blom HH, Gundersen V, Heegaard E (2005) Productivity-diversity relationships for plants, bryophytes, lichens, and polypore fungi in six northern forest landscapes. Ecography 28:705–720. doi:10.1111/j.2005.0906-7590.04249.x

    Google Scholar 

  • Goes-Neto A, Loguercio-Leite C, Guerrero RT (2000) Taxonomy and qualitative ecological aspects of poroid hymenochaetales in a Brazilian seasonal tropical forest. Mycotaxon 76:197–211

    Google Scholar 

  • Götmark F, Thorell M (2003) Size of nature reserves: densities of large trees and dead wood indicate high value of small conservation forests in southern Sweden. Biodivers Conserv 12:1271–1285. doi:10.1023/A:1023000224642

    Google Scholar 

  • Gray AN, Spies TA (1997) Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78:2458–2473

    Article  Google Scholar 

  • Green P, Peterken GF (1997) Variation in the amount of dead wood in the woodlands of the Lower Wye Valley, UK, in relation to the intensity of management. For Ecol Manage 98:229–238. doi:10.1016/S0378-1127(97)00106-0

    Google Scholar 

  • Greslebin AG, Rajchenberg M (2003) Diversity of Corticiaceae sens. lat. in Patagonia, Southern Argentina. NZ J Bot 41:437–446

    Google Scholar 

  • Groposo C, Loguercio-Leite C (2005) Contribution to the lignocellulolytic fungi (Basidiomycetes) of the Atlantic rain forest in southern Brazil. Mycotaxon 92:103–106

    Google Scholar 

  • Grove SJ (2001) Extent and composition of dead wood in Australian lowland tropical rainforest with different management histories. For Ecol Manage 154:35–53. doi:10.1016/S0378-1127(00)00618-6

    Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Ann Rev Ecol Syst 33:1–23. doi:10.1146/annurev.ecolsys.33.010802.150507

    Google Scholar 

  • Grünig CR, McDonald BA, Sieber TN, Rogers SO, Holdenrieder O (2004) Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genet Biol 41:676–687. doi:10.1016/j.fgb.2004.03.004

    PubMed  Google Scholar 

  • Gu WD, Heikkila R, Hanski I (2002) Estimating the consequences of habitat fragmentation on extinction risk in dynamic landscapes. Landsc Ecol 17:699–710. doi:10.1023/A:1022993317717

    Google Scholar 

  • Guby NAB, Dobbertin M (1996) Quantitative estimates of coarse wooded debris and standing trees in selected Swiss forests. Glob Ecol Biogeogr Lett 5:327–341

    Google Scholar 

  • Guillaumin J-J, Mohammed C, Anselmi N, Courtecuisse R, Gregory SC, Holdenrieder O, Intini M, Lung B, Marxmüller H, Morrison D, Rishbeth J, Termorshuizen AJ, Tirro B, Van Dam B (1993) Geographical distribution and ecology of the Armillaria species in Western Europe. Eur J For Pathol 23:321–341

    Google Scholar 

  • Gurnell AM, Gregory KJ, Petts GE (1995) The role of coarse woody debris in forest aquatic habitats—implications for management. Aquat Conserv—Mar Freshw Ecosyst 5:143–166

    Google Scholar 

  • Gurnell AM, Piegay H, Swanson FJ, Gregory SV (2002) Large wood and fluvial processes. Freshw Biol 47:601–619. doi:10.1046/j.1365-2427.2002.00916.x

    Google Scholar 

  • Hahn VC, Blaschke M (2005) Ökologische Studie von Rindenpilzen und Porlingen an Totholz in einem Naturwaldreservat und forstlich bewirtschafteten Vergleichsflächen. Allg Forst Jagdz 176:161–169

    Google Scholar 

  • Hallenberg N, Küffer N (2001) Long-distance spore dispersal in wood-inhabiting Basidiomycetes. Nord J Bot 21:431–436

    Google Scholar 

  • Hallett JG, Lopez T, O’Connell MA, Borysewicz MA (2001) Decay dynamics and avian use of artificially created snags. Northwest Sci 75:378–386

    Google Scholar 

  • Hamdan A, Sieber TN, Holdenrieder O (2005) Decay fungi in Norway spruce snags. In: Manka M, Lakomy P (eds) Root and butt rots of forest trees. Proceedings of the 11th int conf root and butt rots. Poznan and Bialowieza, Poland, IUFRO, pp 126–130, 16–22 Aug 2004

  • Harley JL (1971) Fungi in ecosystems. J Ecol 59:653–668

    Google Scholar 

  • Harmon ME (2001) Moving towards a new paradigm for woody detritus management. Ecol Bull 49:269–278

    Google Scholar 

  • Harmon ME, Franklin JF (1989) Tree seedlings on logs in Picea-Tsuga forests of Oregon and Washington. Ecology 70:48–59

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Google Scholar 

  • Harris RB (1999) Abundance and characteristics of snags in western Montana forests. USDA, Forest Service. RMRS-GTR 31:1–19

    Google Scholar 

  • Harris RB (2001) Observations on the use of stubs by wild birds: a 10-year update. J Ecosyst Manage 1:19–23

    Google Scholar 

  • Hattori T (2005) Diversity of wood-inhabiting polypores in temperate forests with different vegetation types in Japan. Fungal Divers 18:73–88

    Google Scholar 

  • Hautala H, Jalonen J, Laaka-Lindberg S, Vanha-Majamaa I (2004) Impacts of retention felling on coarse woody debris (CWD) in mature boreal spruce forests in Finland. Biodivers Conserv 13:1541–1554. doi:10.1023/B:BIOC.0000021327.43783.a9

    Google Scholar 

  • Heilmann-Clausen J (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol Res 105:575–596. doi:10.1017/S0953756201003665

    Google Scholar 

  • Heilmann-Clausen J, Boddy L (2005) Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species. Microbiol Ecol 49:399–406. doi:10.1007/s00248-004-0240-2

    CAS  Google Scholar 

  • Heilmann-Clausen J, Christensen M (2003) Fungal diversity on decaying beech logs—implications for sustainable forestry. Biodivers Conserv 12:953–973. doi:10.1023/A:1022825809503

    Google Scholar 

  • Heilmann-Clausen J, Christensen M (2004) Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manage 201:105–117. doi:10.1016/j.foreco.2004.07.010

    Google Scholar 

  • Heilmann-Clausen J, Christensen M (2005) Wood-inhabiting macrofungi in Danish beech-forests—conflicting diversity patterns and their implications in a conservation perspective. Biol Conserv 122:633–642. doi:10.1016/j.biocon.2004.10.001

    Google Scholar 

  • Heilmann-Clausen J, Aude E, Christensen M (2005) Cryptogam communities on decaying deciduous wood—does tree species diversity matter? Biodivers Conserv 14:2061–2078. doi:10.1007/s10531-004-4284-x

    Google Scholar 

  • Heinemann K, Kitzberger T, Veblen TT (2000) Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J For Res 30:25–31

    Google Scholar 

  • Heinemann K, Kitzberger T (2006) Effects of position, understorey vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of north-western Patagonia: a manipulative approach. J Biogeogr 33:1357–1367. doi:10.1111/j.1365-2699.2006.01511.x

    Google Scholar 

  • Hestmark G (1997) Gap-dynamics, recruitment and individual growth in populations of Lasallia pustulata. Mycol Res 101:1273–1280. doi:10.1017/S0953756297003997

    Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in Homobasidiomycetes. Syst Biol 50:215–242. doi:10.1080/10635150121079

    PubMed  CAS  Google Scholar 

  • Hirayama K, Sakimoto M (2005) Seedling demography and establishment of Cryptomeria japonica in a cool-temperate, old-growth, conifer hardwood forest in the snowy region of Japan. J For Res 10:67–71. doi:10.1007/s10310-004-0104-0

    Google Scholar 

  • Hiura T, Sano J, Konno Y (1996) Age structure and response to fine scale disturbances of Abies sachalinensis, Picea jezoensis, Picea glehnii, and Betula ermanii growing under the influence of a dwarf bamboo understory in northern Japan. Can J For Res 26:289–297

    Google Scholar 

  • Hodge SJ, Peterken GF (1998) Deadwood in British forests: priorities and a strategy. Forestry 71:99–112. doi:10.1093/forestry/71.2.99

    Google Scholar 

  • Högberg N, Holdenrieder O, Stenlid J (1999) Population structure of the wood decay fungus Fomitopsis pinicola. Heredity 83:354–360

    PubMed  Google Scholar 

  • Högberg N, Stenlid J (1999) Population genetics of Fomitopsis rosea—a wood-decay fungus of the old-growth European taiga. Mol Ecol 8:703–710. doi:10.1046/j.1365-294X.1999.00561.x

    Google Scholar 

  • Høiland K, Bendiksen E (1996) Biodiversity of wood-inhabiting fungi in a boreal coniferous forest in Sor-Trondelag County, Central Norway. Nord J Bot 16:643–659

    Google Scholar 

  • Holdenrieder O, Greig BJW (1998) Biological methods of control. In: Woodward S, Stenlid J, Karjalainen K, Huttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 235–258

    Google Scholar 

  • Hood IA, Beets PN, Kimberley MO, Gardner JF, Oliver GR, Pearce S (2004) Colonisation of podocarp coarse woody debris by decomposer basidiomycete fungi in an indigenous forest in the central North Island of New Zealand. For Ecol Manage 196:311–325. doi:10.1016/j.foreco.2004.03.024

    Google Scholar 

  • Hornberg G, Ohlson M, Zackrisson O (1997) Influence of bryophytes and microrelief conditions on Picea abies seed regeneration patterns in boreal old-growth swamp forests. Can J For Res 27:1015–1023

    Google Scholar 

  • Hou P, Pan C (2001) Coarse woody debris and its function in forest ecosystem. Chin J Appl Ecol 12:309–314

    CAS  Google Scholar 

  • Huhndorf SM, Lodge DJ, Wang C-J, Stokland JN (2004) Macrofungi on woody substrata. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier, Amsterdam, pp 159–163

    Google Scholar 

  • Humphrey JW (2005) Benefits to biodiversity from developing old-growth conditions in British upland spruce plantations: a review and recommendations. Forestry 78:33–53. doi:10.1093/forestry/cpi004

    Google Scholar 

  • Humphrey JW, Newton AC, Peace AJ, Holden E (2000) The importance of conifer plantations in northern Britain as a habitat for native fungi. Biol Conserv 96:241–252. doi:10.1016/S0006-3207(00)00077-X

    Google Scholar 

  • Humphrey JW, Davey S, Peace AJ, Ferris R, Harding K (2002) Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol Conserv 107:165–180. doi:10.1016/S0006-3207(02)00057-5

    Google Scholar 

  • Hunziker U, Brang P (2005) Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For Ecol Manage 210:67–79. doi:10.1016/j.foreco.2005.02.019

    Google Scholar 

  • Ishii H, Kadotani T (2006) Biomass and dynamics of attached dead branches in the canopy of 450-year-old Douglas-fir trees. Can J For Res 36:378–389

    Google Scholar 

  • Jabin M, Mohr D, Kappes H, Topp W (2004) Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. For Ecol Manage 194:61–69. doi:10.1016/j.foreco.2004.01.053

    Google Scholar 

  • Jack SB, Parks CG, Stober JM, Engstrom RT (2003) Inoculating red heart fungus (Phellinus pini) to create nesting habitat for the red-cockaded woodpecker. In: Proceedings of the Red Cockaded Woodpecker Symp, pp 1–18

  • Jackson JA, Jackson BJS (2004) Ecological relationships between fungi and woodpecker cavity sites. Condor 106:37–49

    Google Scholar 

  • Janisch JE, Harmon ME (2002) Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Phys 22:77–89

    CAS  Google Scholar 

  • Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111:641–648. doi:10.1111/j.1600-0706.2005.13851.x

    Google Scholar 

  • Jenkins MA, Webster CR, Parker GR, Spetich MA (2004) Coarse woody debris in managed Central Hardwood Forests of Indiana, USA. For Sci 50:781–792

    Google Scholar 

  • Johanneson H, Stenlid J (2004) Nuclear reassortment between vegetative mycelia in natural populations of the basidiomycete Heterobasidion annosum. Fungal Genet Biol 41:563–570. doi:10.1016/j.fgb.2004.01.002

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Jonsell M, Nordlander G (2002) Insects in polypore fungi as indicator species: a comparison between forest sites differing in amounts and continuity of dead wood. For Ecol Manage 157:101–118. doi:10.1016/S0378-1127(00)00662-9

    Google Scholar 

  • Jonsson BG (2000) Availability of course wood debris in a boreal old growth Picea abies forest. J Veg Sci 11:51–56

    Google Scholar 

  • Jonsson BG, Jonsell M (1999) Exploring potential biodiversity indicators in boreal forests. Biodivers Conserv 8:1417–1433. doi:10.1023/A:1008900309571

    Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fenn 39:289–309

    Google Scholar 

  • Jonsson M, Ranius T, Ekvall H, Bostedt G, Dahlberg A, Ehnstrom B, Nordén B, Stokland JN (2006) Cost-effectiveness of silvicultural measures to increase substrate availability for red-listed wood-living organisms in Norway spruce forests. Biol Conserv 127:443–462. doi:10.1016/j.biocon.2005.09.004

    Google Scholar 

  • Junninen K, Similä M, Kouki J, Kotiranta H (2006) Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography 29:75–83. doi:10.1111/j.2005.0906-7590.04358.x

    Google Scholar 

  • Juutinen A, Mönkkönen M (2004) Testing alternative indicators for biodiversity conservation in old-growth boreal forests: ecology and economics. Ecol Econ 50:35–48. doi:10.1016/j.ecolecon.2004.02.006

    Google Scholar 

  • Juutinen A, Mönkkönen M, Sippola A-L (2006) Cost-efficiency of decaying wood as a surrogate for overall species-richness in boreal forests. Conserv Biol 20:74–84. doi:10.1111/j.1523-1739.2006.00306.x

    PubMed  Google Scholar 

  • Kappes H (2005) Influence of coarse woody debris on the gastropod community of a managed calcareous beech forest in western Europe. J Molluscan Stud 71:85–91. doi:10.1093/mollus/eyi011

    Google Scholar 

  • Kappes H, Topp W (2004) Emergence of Coleoptera from deadwood in a managed broadleaved forest in central Europe. Biodivers Conserv 13:1905–1924. doi:10.1023/B:BIOC.0000035873.56001.7d

    Google Scholar 

  • Kauserud H, Schumacher T (2003a) Genetic structure of Fennoscandian populations of the threatened wood-decay fungus Fomitopsis rosea (Basidiomycota). Mycol Res 107:155–163. doi:10.1017/S0953756203007214

    PubMed  CAS  Google Scholar 

  • Kauserud H, Schumacher T (2003b) Regional and local population structure of the pioneer wood-decay fungus Trichaptum abietinum. Mycologia 95:416–425

    CAS  Google Scholar 

  • Kauserud H, Lie M, Stensrud O, Ohlson M (2005) Molecular characterization of airborne fungal spores in boreal forests of contrasting human disturbance. Mycologia 97:1215–1224

    PubMed  CAS  Google Scholar 

  • Keller M, Palace M, Asner GP, Pereira R, Silva JNM (2004) Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Glob Change Biol 10:784–795. doi:10.1111/j.1529-8817.2003.00770.x

    Google Scholar 

  • Kennedy PG, Quinn T (2001) Understory plant establishment on old-growth stumps and the forest floor in western Washington. For Ecol Manage 154:193–200. doi:10.1016/S0378-1127(00)00622-8

    Google Scholar 

  • Kohsaka R, Handoh IC (2006) Perceptions of “close-to-nature forestry” by German and Japanese groups: inquiry using visual materials of “cut” and “dead” wood. J For Res 11:11–19. doi:10.1007/s10310-005-0177-4

    Google Scholar 

  • Komonen A (2003) Distribution and abundance of insect fungivores in the fruiting bodies of Fomitopsis pinicola. Ann Zool Fenn 40:495–504

    Google Scholar 

  • Komonen A (2005) Local spatial pattern in the occurrence of two congeneric wood-decaying fungi in an old-growth boreal forest. Scand J For Res 20:393–399. doi:10.1080/02827580500281983

    Google Scholar 

  • Korhonen K, Holdenrieder O (2005) Neue Erkenntnisse über den Wurzelschwamm (Heterobasidion annosum s.l.)—eine Literaturübersicht. Forst und Holz 60:206–210

    Google Scholar 

  • Köster K, Jogiste K, Tukia H, Niklasson M, Mols T (2005) Variation and ecological characteristics of coarse woody debris in Lahemaa and Karula National Parks, Estonia. Scand J For Res 20(Suppl 6):102–111. doi:10.1080/14004080510042137

    Google Scholar 

  • Kouki J, Lofman S, Martikainen P, Rouvinen S, Uotila A (2001) Forest fragmentation in Fennoscandia: linking habitat requirements of wood-associated threatened species to landscape and habitat changes. Scand J For Res 16:27–37. doi:10.1080/028275801300090564

    Google Scholar 

  • Krajick K (2001) Defending deadwood. Science 293:1579–1581. doi:10.1126/science.293.5535.1579

    PubMed  CAS  Google Scholar 

  • Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Poll 82:227–238. doi:10.1007/BF01182836

    CAS  Google Scholar 

  • Kruys N, Jonsson BG (1999) Fine woody debris is important for species-richness on logs in managed boreal spruce forests of northern Sweden. Can J For Res 29:1295–1299

    Google Scholar 

  • Kruys N, Fries C, Jonsson BG, Lämås T, Ståhl G (1999) Wood-inhabiting cryptogams on dead Norway spruce (Picea abies) trees in managed Swedish boreal forests. Can J For Res 29:178–186

    Google Scholar 

  • Kruys N, Jonsson BG, Stahl G (2002) A stage-based matrix model for decay-class dynamics of woody debris. Ecol Appl 12:773–781

    Google Scholar 

  • Küffer N, Senn-Irlet B (2000) Diversity and ecology of corticioid basidiomycetes in green alder stands in Switzerland. Nova Hedwigia 71:131–143

    Google Scholar 

  • Küffer N, Senn-Irlet B (2005a) Influence of forest management on the species-richness and composition of wood-inhabiting basidiomycetes in Swiss forests. Biodivers Conserv 14:2419–2435. doi:10.1007/s10531-004-0151-z

    Google Scholar 

  • Küffer N, Senn-Irlet B (2005b) Diversity and ecology of wood-inhabiting aphyllophoroid basidiomycetes on fallen woody debris in various forest types in Switzerland. Mycol Prog 4:77–86. doi:10.1007/s11557-006-0110-z

    Google Scholar 

  • Kulhánková A, Béguiristain T, Moukoumi J, Berthelin J, Ranger J (2006) Spatial and temporal diversity of wood decomposer communities in different forest stands, determined by ITS rDNA targeted TGGE. Ann For Sci 63:547–556. doi:10.1051/forest:2006037

    Google Scholar 

  • Kupferschmid AD, Bugmann H (2005) Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecol 179:247–268. doi:10.1007/s11258-005-0903-1

    Google Scholar 

  • Kupferschmid AD, Brang P, Schönenberger W, Bugmann H (2003) Decay of Picea abies snag stands on steep mountain slopes. For Chron 79:247–252

    Google Scholar 

  • Kuuluvainen T, Juntunen P (1998) Seedling establishment in relation to microhabitat variation in a windthrow gap in a boreal Pinus sylvestris forest. J Veg Sci 9:551–562

    Google Scholar 

  • Kuuluvainen T, Kalmari R (2003) Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Ann Bot Fenn 40:401–413

    Google Scholar 

  • Lack AJ (1991) Dead logs as a substrate for rain forest trees in Dominica. J Trop Ecol 7:401–405

    Google Scholar 

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests:a synthesis. Can J For Res 34:763–777

    CAS  Google Scholar 

  • Lee P, Sturgess K (2001) The effects of logs, stumps, and root throws on understory communities within 28-year-old aspen-dominated boreal forests. Can J Bot 79:905–916

    Google Scholar 

  • Lee PC, Crites S, Nietfeld M, VanNguyen H, Stelfox JB (1997) Characteristics and origins of deadwood material in aspen-dominated boreal forests. Ecol Appl 7:691–701

    Google Scholar 

  • Lee SD (2004) Population dynamics and demography of deermice (Peromyscus maniculatus) in heterogeneous habitat: role of coarse woody debris. Pol J Ecol 52:55–62

    Google Scholar 

  • Lewis C (1998) Creating snags and wildlife trees in commercial forest landscapes. West J Appl For 13(3):97–101

    Google Scholar 

  • Liao CC, Chou CH, Wu JT (2003) Regeneration patterns of yellow cypress on down logs in mixed coniferous-broadleaf forest of Yuanyang Lake Nature Preserve, Taiwan. Bot Bull Acad Sinica 44:229–238

    Google Scholar 

  • Lilja S, De Chantal M, Kuuluvainen T, Vanha-Majamaa I, Puttonen P (2005) Restoring natural characteristics in managed Norway spruce [Picea abies (L.) Karst.] stands with partial cutting, dead wood creation and fire: immediate treatment effects. Scand J For Res 20(Suppl 6):68–78. doi:10.1080/14004080510040977

    Google Scholar 

  • Lindblad I (1997) Wood-inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality. Nord J Bot 18:243–255

    Google Scholar 

  • Lindblad I (2000) Host specificity of some wood-inhabiting fungi in a tropical forest. Mycologia 92:399–405

    Google Scholar 

  • Lindblad I (2001) Diversity of poroid and some corticoid wood-inhabiting fungi along the rainfall gradient in tropical forests, Costa Rica. J Trop Ecol 17:353–369. doi:10.1017/S0266467401001249

    Google Scholar 

  • Lindhe A, Asenblad N, Toresson HG (2004) Cut logs and high stumps of spruce, birch, aspen and oak—nine years of saproxylic fungi succession. Biol Conserv 119:443–454. doi:10.1016/j.biocon.2004.01.005

    Google Scholar 

  • Liski J, Korotkov AV, Prins CFL, Karjalainen T, Victor DG, Kauppi PE (2003) Increased carbon sink in temperate and boreal forests. Clim Change 61:89–99. doi:10.1023/A:1026365005696

    CAS  Google Scholar 

  • Liu WH, Bryant DM, Hutyra LR, Saleska SR, Hammond-Pyle E, Curran D, Wofsy SC (2006) Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests. Oecologia 148:108–117. doi:10.1007/s00442-006-0356-9

    PubMed  Google Scholar 

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests—variation in time and space. Can J Bot 73:S1391–S1398

    Google Scholar 

  • Lonsdale D (2004) Aging processes in trees and their relationships with decay fungi. In: Nicolotti G, Gonthier P (eds) The trees of history. Protection and exploitation of veteran trees. Proc Int Cong, Torino, Italy, pp 23–30, 1–2 Apr 2004

  • Lumley TC, Gignac LD, Currah RS (2001) Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can J Bot 79:76–92

    Google Scholar 

  • Lusk CH (1995) Seed size, establishment sites and species coexistence in a Chilean rainforest. J Veg Sci 6:249–256

    Google Scholar 

  • Mackensen J, Bauhus J, Webber E (2003) Decomposition rates of coarse woody debris—a review with particular emphasis on Australian tree species. Aust J Bot 51:27–37. doi:10.1071/BT02014

    Google Scholar 

  • MacNally R, Parkinson A, Horrocks G, Conole L, Tzaros C (2001) Relationships between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on south-eastern Australian floodplains. Biol Conserv 99:191–205. doi:10.1016/S0006-3207(00)00180-4

    Google Scholar 

  • MacNally R, Horrocks G, Pettifer L (2002a) Experimental evidence for potential beneficial effects of fallen timber in forests. Ecol Appl 12:1588–1594

    Google Scholar 

  • MacNally R, Parkinson A, Horrocks G, Young M (2002b) Current loads of coarse woody debris on southeastern Australian floodplains: evaluation of change and implications for restoration. Restor Ecol 10:627–635. doi:10.1046/j.1526-100X.2002.01043.x

    Google Scholar 

  • Mäkinen H, Hynynen J, Siitonen J, Sievanen R (2006) Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland. Ecol Appl 16:1865–1879

    PubMed  Google Scholar 

  • Manion PD (2003) Evolution of concepts in forest pathology. Phytopathology 93:1052–1055

    PubMed  Google Scholar 

  • Marage D, Lemperiere G (2005) The management of snags: a comparison in managed and unmanaged ancient forests of the Southern French Alps. Ann For Sci 62:135–142. doi:10.1051/forest:2005005

    Google Scholar 

  • Marcot BG (2002) An ecological functional basis for managing wood decay elements for wildlife. USDA Forest Service, PSW-GTR-181

  • Maser C, Trappe JM, Nussbaum RA (1978) Fungal—small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59:799–809

    Google Scholar 

  • Mayer AL, Kauppi PE, Tikka PM, Angelstam PK (2006) Conservation implications of exporting domestic wood harvest to neighboring countries. Environ Sci Pollut 9:228–236. doi:10.1016/j.envsci.2005.12.002

    Google Scholar 

  • McCay TS, Komoroski MJ (2004) Demographic responses of shrews to removal of coarse woody debris in a managed pine forest. For Ecol Manage 189:387–395. doi:10.1016/j.foreco.2003.09.005

    Google Scholar 

  • McClelland BR, McClelland PT (1999) Pileated woodpecker nest and roost trees in Montana: links with old-growth and forest “health”. Wildl Soc Bull 27:846–857

    Google Scholar 

  • McClure JM, Kolka RK, White A (2004) Effect of forest harvesting best management practices on coarse woody debris distribution in stream and riparian zones in three Appalachian watersheds. Water Air Soil Pollut 4:245–261. doi:10.1023/B:WAFO.0000012815.30596.97

    Google Scholar 

  • McComb W, Lindenmayer D (1999) Dying, dead, and down trees. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 335–372

    Google Scholar 

  • McGee GG (2000) The contribution of beech bark disease-induced mortality to coarse woody debris loads in northern hardwood stands of Adirondack Park, New York, USA. Can J For Res 30:1453–1462

    Google Scholar 

  • McGee GG (2001) Stand-level effects on the role of decaying logs as vascular plant habitat in Adirondack northern hardwood forests. J Torrey Bot Soc 128:370–380

    Google Scholar 

  • McGee GG, Leopold DJ, Nyland RD (1999) Structural characteristics of old-growth, maturing, and partially cut northern hardwood forests. Ecol Appl 9:1316–1329

    Google Scholar 

  • McKenny HJA, Kirkpatrick JB (1999) The role of fallen logs in the regeneration of tree species in Tasmanian mixed forest. Aust J Bot 47:745–753. doi:10.1071/BT98001

    Google Scholar 

  • McPherson BA, Mori SR, Wood DL, Storer AJ, Svihra P, Kelly NM, Standiford RB (2005) Sudden oak death in California: disease progression in oaks and tanoaks. For Ecol Manage 213:71–89. doi:10.1016/j.foreco.2005.03.048

    Google Scholar 

  • Meyer P (1999) Dead wood research in forest reserves of Northwest-Germany: methodology and results. Forstwissenschaftliches Centralblatt 118:167–180

    Google Scholar 

  • Molina R, Pilz D, Smith J, Dunham S, Dreisbach T, O’Dell T, Castellano M (2001) Conservation and management of forest fungi in the Pacific Northwestern United States: an integrated ecosystem approach. In: Moore D, Nauta MM, Evans SE, Rotheroe M (eds) Fungal conservation—issues and solutions. Cambridge University Press, Cambridge, pp 19–63

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600. doi:10.1111/j.1461-0248.2004.00606.x

    Google Scholar 

  • Mori A, Mizumachi E, Osono T, Doi Y (2004) Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. For Ecol Manage 196:287–297. doi:10.1016/j.foreco.2004.03.027

    Google Scholar 

  • Motta R, Berretti R, Lingua E, Piussi P (2006) Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. For Ecol Manage 235:155–163. doi:10.1016/j.foreco.2006.08.007

    Google Scholar 

  • Mukhin VA, Kotiranta H (2001) Wood-decaying fungi of northernmost forests in river Khatanga basin. Mikologiya I Fitopatologiya 35:41–47

    Google Scholar 

  • Müller-Using S, Bartsch N (2003) Dynamics of woody debris in a beech stand (Fagus sylvatica L.) in Solling. Input, causes and decomposition of woody debris. Allg For Jagdz 174:122–130

    Google Scholar 

  • Narukawa Y, Yamamoto S (2003) Development of conifer seedlings roots on soil and fallen logs in boreal and subalpine coniferous forests of Japan. For Ecol Manage 175:131–139. doi:10.1016/S0378-1127(02)00125-1

    Google Scholar 

  • Narukawa Y, Iida S, Tanouchi H, Abe S, Yamamoto SI (2003) State of fallen logs and the occurrence of conifer seedlings and saplings in boreal and subalpine old-growth forests in Japan. Ecol Res 18:267–277. doi:10.1046/j.1440-1703.2003.00553.x

    Google Scholar 

  • Niemelä T, Korhonen K (1998) Taxonomy of the genus Heterobasidion. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CABI, Wallingford, pp 27–33

    Google Scholar 

  • Niemelä T, Renvall P, Penttilä R (1995) Interactions of fungi at late stages of wood decomposition. Ann Bot Fenn 32:141–152

    Google Scholar 

  • Noguchi M, Yoshida T (2004) Tree regeneration in partially cut conifer-hardwood mixed forests in northern Japan: roles of establishment substrate and dwarf bamboo. For Ecol Manage 190:335–344. doi:10.1016/j.foreco.2003.10.024

    Google Scholar 

  • Nordén B (1997) Genetic variation within and among populations of Fomitopsis pinicola (Basidiomycetes). Nord J Bot 17:319–329

    Google Scholar 

  • Nordén B, Larsson KH (2000) Basidiospore dispersal in the old-growth forest fungus Phlebia centrifuga (Basidiomycetes). Nord J Bot 20:215–219

    Google Scholar 

  • Nordén B, Appelqvist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodivers Conserv 10:779–791. doi:10.1023/A:1016675103935

    Google Scholar 

  • Nordén B, Paltto H (2001) Wood-decay fungi in hazel wood: species-richness correlated to stand age and dead wood features. Biol Conserv 101:1–8. doi:10.1016/S0006-3207(01)00049-0

    Google Scholar 

  • Nordén B, Gotmark F, Tonnberg M, Ryberg M (2004a) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. For Ecol Manage 194:235–248. doi:10.1016/j.foreco.2004.02.043

    Google Scholar 

  • Nordén B, Ryberg M, Gotmark F, Olausson B (2004b) Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol Conserv 117:1–10. doi:10.1016/S0006-3207(03)00235-0

    Google Scholar 

  • Norstedt G, Bader P, Ericson L (2001) Polypores as indicators of conservation value in Corsican pine forests. Biol Conserv 99:347–354. doi:10.1016/S0006-3207(00)00220-2

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction—the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Ódor P, Van Hees AFM (2004) Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J Bryol 26:79–95. doi:10.1179/037366804225021038

    Google Scholar 

  • Ódor P, Heilmann-Clausen J, Christensen M, Aude E, van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovar T, van Hees AFM, Kosec J, Matocec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71. doi:10.1016/j.biocon.2006.02.004

    Google Scholar 

  • O’Hanlon-Manners DL, Kotanen PM (2004) Logs as refuges from fungal pathogens for seeds of eastern hemlock (Tsuga canadensis). Ecology 85:284–289

    Google Scholar 

  • Økland B (1996) Unlogged forests: important sites for preserving the diversity of mycetophilids (Diptera: Sciaroidea). Biol Conserv 76:297–310. doi:10.1016/0006-3207(95)00129-8

    Google Scholar 

  • Ortega A, Navarro FB (2004) A myco-ecological analysis (lignicolous Aphyllophorales sensu lato, Basidiomycota) of the Abies pinsapo, Quercus and Pinus forests of Andalusia (southern Spain). Nova Hedwigia 78:485–499. doi:10.1127/0029-5035/2004/0078-0485

    Google Scholar 

  • Parent S, Simard MJ, Morin H, Messier C (2003) Establishment and dynamics of the balsam fir seedling bank in old forests of northeastern Quebec. Can J For Res 33:597–603

    Google Scholar 

  • Parish R, Antos JA (2005) Advanced regeneration and seedling establishment in small cutblocks in high-elevation spruce-fir forest at Sicamous Creek, southern British Columbia. Can J For Res 35:1877–1888

    Google Scholar 

  • Parks CG, Shaw DC (1996) Death and decay: a vital part of living canopies. Northwest Sci 70:46–53

    Google Scholar 

  • Parks CG, Conklin DA, Bednar L, Maffei H (1999) Woodpecker use and fall rates of snags created by killing ponderosa pine infected with dwarf mistletoe. USDA FS PNW Research Paper Nr. 515

  • Parmasto E (2001) Fungi as indicators of primeval and old-growth forests deserving protection. In: Moore D, Nauta MM, Evans SE, Rotheroe M (eds) Fungal conservation—issues and solutions. Cambridge University Press, Cambridge, pp 81–88

    Google Scholar 

  • Parrent JL, Garbelotto M, Gilbert GS (2004) Population genetic structure of the polypore Datronia caperata in fragmented mangrove forests. Mycol Res 108:403–410. doi:10.1017/S0953756204009773

    PubMed  CAS  Google Scholar 

  • Parsons S, Lewis KJ, Psyllakis JM (2003) Relationships between roosting habitat of bats and decay of aspen in the sub-boreal forests of British Columbia. For Ecol Manage 177:559–570. doi:10.1016/S0378-1127(02)00448-6

    Google Scholar 

  • Passovoy MD, Fulé PZ (2006) Snag and woody debris dynamics following severe wildfires in northern Arizona ponderosa pine forests. For Ecol Manage 223:237–246. doi:10.1016/j.foreco.2005.11.016

    Google Scholar 

  • Patrick DA, Hunter ML, Calhoun AJK (2006) Effects of experimental forestry treatments on a Maine amphibian community. For Ecol Manage 234:323–332. doi:10.1016/j.foreco.2006.07.015

    Google Scholar 

  • Pedlar JH, Pearce JL, Venier LA, McKenney DW (2002) Coarse woody debris in relation to disturbance and forest type in boreal Canada. For Ecol Manage 158:189–194. doi:10.1016/S0378-1127(00)00711-8

    Google Scholar 

  • Penttilä R, Siitonen J, Kuusinen M (2004) Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv 117:271–283. doi:10.1016/j.biocon.2003.12.007

    Google Scholar 

  • Penttilä R, Lindgren M, Miettinen O, Rita H, Hanski I (2006) Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos 114:225–240. doi:10.1111/j.2006.0030-1299.14349.x

    Google Scholar 

  • Peterson CJ, Haines BL (2000) Early successional patterns and potential facilitation of woody plant colonization by rotting logs in premontane Costa Rican pastures. Restor Ecol 8:361–369. doi:10.1046/j.1526-100x.2000.80051.x

    Google Scholar 

  • Peterson GD (2002) Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 5:329–338. doi:10.1007/s10021-001-0077-1

    Google Scholar 

  • Pharo EJ, Lindenmayer DB, Taws N (2004) The effects of large-scale fragmentation on bryophytes in temperate forests. J Appl Ecol 41:910–921. doi:10.1111/j.0021-8901.2004.00947.x

    Google Scholar 

  • Piovesan G, Di Filippo A, Alessandrini A, Biondi F, Schirone B (2005) Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J Veg Sci 16:13–28

    Google Scholar 

  • Porter AD, St Clair CC, de Vries A (2005) Fine-scale selection by marten during winter in a young deciduous forest. Can J For Res 35:901–909

    Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077. doi:10.1111/j.1365-2486.2004.00866.x

    Google Scholar 

  • Prestemon JP, Holmes TP (2004) Market dynamics and optimal timber salvage after a natural catastrophe. For Sci 50:495–511

    Google Scholar 

  • Pretty JL, Dobson M (2004) The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams. Hydr Earth Syst Sci 8:550–559

    Article  Google Scholar 

  • Progar RA, Schowalter TD, Freitag CM, Morrell JJ (2000) Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon. Oecologia 124:426–431. doi:0.1007/PL00008868

    Google Scholar 

  • Prospero S, Holdenrieder O, Rigling D (2003) Primary resource capture in two sympatric Armillaria species in managed Norway spruce forests. Mycol Res 107:329–338. doi:10.1017/S0953756203007275

    PubMed  Google Scholar 

  • Rademacher C, Winter S (2003) Coarse woody debris in natural beech forests: generic predictions of the simulation model BEFORE-CWD of quantity, spatial distribution and availability. Forstwissenschaftliches Centralblatt 122:337–357

    Google Scholar 

  • Ranius T (2002) Osmoderma eremita as an indicator of species-richness of beetles in tree hollows. Biodivers Conserv 11:931–941. doi:10.1023/A:1015364020043

    Google Scholar 

  • Ranius T, Kindvall O (2004) Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol Conserv 119:51–59. doi:10.1016/j.biocon.2003.10.021

    Google Scholar 

  • Ranius T, Fahrig L (2006) Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scand J For Res 21:201–208. doi:10.1080/02827580600688269

    Google Scholar 

  • Ranius T, Kindvall O, Kruys N, Jonsson BG (2003) Modelling dead wood in Norway spruce stands subject to different management regimes. For Ecol Manage 182:13–29. doi:10.1016/S0378-1127(03)00027-6

    Google Scholar 

  • Ranius T, Ekvall H, Jonsson M, Bostedt G (2005) Cost-efficiency of measures to increase the amount of coarse woody debris in managed Norway spruce forests. For Ecol Manage 206:119–133. doi:10.1016/j.foreco.2004.10.061

    Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, New York

    Google Scholar 

  • Redfern DB, Stenlid J (1998) Spore dispersal and infection. In: Woodward S, Stenlid J, Karjalainen K, Huttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CABI, Wallingford, pp 105–141

    Google Scholar 

  • Renvall P (1995) Community structure and dynamics of wood-rotting basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35:1–51

    Google Scholar 

  • Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, de Camargo PB, Portilho K, Marques DF, Wofsy SC (2004) Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecol Appl 14:S55–S71

    Google Scholar 

  • Risch AC, Nagel LM, Schutz M, Krusi BO, Kienast F, Bugmann H (2003) Structure and long-term development of subalpine Pinus montana Miller and Pinus cembra L. forests in the Central European Alps. Forstwissenschaftliches Centralblatt 122:219–230

    Google Scholar 

  • Rishbeth J (1959) Dispersal of Fomes annosus Fr. and Peniophora gigantea (Fr.) Massee. Trans Br Mycol Soc 42:243–260

    Article  Google Scholar 

  • Roberge JM, Angelstam P (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv Biol 18:76–85. doi:10.1111/j.1523-1739.2004.00450.x

    Google Scholar 

  • Robertson AI (1991) Plant animal interactions and the structure and function of mangrove forest ecosystems. Aust J Ecol 16:433–443

    Google Scholar 

  • Rodriguez C, Burdsall HH, Volk TJ (1995) Wood-decay basidiomycetes from the state of Bolivar in Southeastern Venezuela. Mycotaxon 53:377–389

    Google Scholar 

  • Rogers S, Holdenrieder O, Sieber TN (1999) Intraspecific comparisons of Laetiporus sulphureus isolates from broadleaf and coniferous trees in Europe. Mycol Res 103:1245–1251. doi:10.1017/S0953756299008564

    Google Scholar 

  • Rolstad J, Saetersdal M, Gjerde I, Storaunet KO (2004) Wood-decaying fungi in boreal forest: are species-richness and abundances influenced by small-scale spatiotemporal distribution of dead wood? Biol Conserv 117:539–555. doi:10.1016/j.biocon.2003.09.008

    Google Scholar 

  • Rooney TP, Waller DM (1998) Local and regional variation in hemlock seedling establishment in forests of the upper Great Lakes region, USA. For Ecol Manage 111:211–224. doi:10.1016/S0378-1127(98)00333-8

    Google Scholar 

  • Rothman JM, Van Soest PJ, Pell AN (2006) Decaying wood is a sodium source for mountain gorillas. Biol Lett 2:321–324. doi:10.1098/rsbl.2006.0480

    PubMed  CAS  Google Scholar 

  • Rouvinen S, Kouki J (2002) Spatiotemporal availability of dead wood in protected old-growth forests: a case study from boreal forests in eastern Finland. Scand J For Res 17:317–329. doi:10.1080/02827580260138071

    Google Scholar 

  • Rouvinen S, Kuuluvainen T, Karjalainen L (2002) Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can J For Res 32:2184–2200

    Google Scholar 

  • Rouvinen S, Rautiainen A, Kouki J (2005) A relation between historical forest use and current dead woody material in a boreal protected old-growth forest in Finland. Silva Fenn 39:21–36

    Google Scholar 

  • Rubino DL, McCarthy BC (2003) Composition and ecology of macrofungal and myxomycete communities on oak woody debris in a mixed-oak forest of Ohio. Can J For Res 33:2151–2163

    Google Scholar 

  • Russell RE, Saab VA, Dudley JG, Rotella JJ (2006) Snag longevity in relation to wildfire and postfire salvage logging. For Ecol Manage 232:179–187. doi:10.1016/j.foreco.2006.05.068

    Google Scholar 

  • Ryvarden L (1998) African polypores—a review. Belg J Bot 131:150–155

    Google Scholar 

  • Saetersdal M, Gjerde I, Blom HH (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biol Conserv 122:305–316. doi:10.1016/j.biocon.2004.07.020

    Google Scholar 

  • Sakamoto Y, Miyamoto T (2005) Racodium snow blight in Japan. For Pathol 35:1–7. doi:10.1111/j.1439-0329.2004.00383.x

    Google Scholar 

  • Samuelsson J, Gustafsson L, Ingelog T (1994) Dying and dead trees: a review of their importance for biodiversity. Swedish Threatened Species Unit, Uppsala

    Google Scholar 

  • Sánchez-Flores E, Yool SR (2004) Site environment characterization of downed woody fuels in the Rincon Mountains, Arizona: regression tree approach. Int J Wildland Fire 13:467–477. doi:10.1071/WF04015

    Google Scholar 

  • Santiago LS (2000) Use of coarse woody debris by the plant community of a Hawaiian montane cloud forest. Biotropica 32:633–641. doi:10.1111/j.1744-7429.2000.tb00510.x

    Google Scholar 

  • Schiegg K (1998) Totholz bringt Leben in den Wirtschaftswald. Schweiz Z Forstw 149:784–794

    Google Scholar 

  • Schmit JP (2005) Species-richness of tropical wood-inhabiting macrofungi provides support for species-energy theory. Mycologia 97:751–761

    Article  PubMed  Google Scholar 

  • Schmit JP, Mueller GM, Leacock PR, Mata JL, Wu QX, Huang YG (2005) Assessment of tree species-richness as a surrogate for macrofungal species-richness. Biol Conserv 121:99–110. doi:10.1016/j.biocon.2004.04.013

    Google Scholar 

  • Schönenberger W, Noack A, Thee P (2005) Effect of timber removal from windthrow slopes on the risk of snow avalanches and rockfall. For Ecol Manage 213:197–208. doi:10.1016/j.foreco.2005.03.062

    Google Scholar 

  • Schwarze FWMR, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer, Berlin

    Google Scholar 

  • Selonen VAO, Ahlroth P, Kotiaho JS (2005) Anthropogenic disturbance and diversity of species: polypores and polypore-associated beetles in forest, forest edge and clear-cut. Scand J For Res 20(Suppl 6):49–58. doi:10.1080/14004080510041002

    Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Siitonen P, Lehtinen A, Siitonen M (2005) Effects of forest edges on the distribution, abundance, and regional persistence of wood-rotting fungi. Conserv Biol 19:250–260. doi:10.1111/j.1523-1739.2005.00232.x

    Google Scholar 

  • Simard MJ, Bergeron Y, Sirois L (1998) Conifer seedling recruitment in a southeastern Canadian boreal forest: the importance of substrate. J Veg Sci 9:575–582

    Google Scholar 

  • Simard MJ, Bergeron Y, Sirois L (2003) Substrate and litterfall effects on conifer seedling survivorship in southern boreal stands of Canada. Can J For Res 33:672–681

    Google Scholar 

  • Similä M, Kouki J, Mönkkönen M, Sippola A-L, Huhta E (2006) Co-variation and indicators of species diversity: can richness of forest-dwelling species be predicted in northern boreal forests? Ecol Indic 6:686–700. doi:10.1016/j.ecolind.2005.08.028

    Google Scholar 

  • Sippola A-L, Renvall P (1999) Wood-decomposing fungi and seed-tree cutting: a 40-year perspective. For Ecol Manage 115:183–201. doi:10.1016/S0378-1127(98)00398-3

    Google Scholar 

  • Sippola A-L, Similä M, Mönkkönen M, Jokimäki J (2004) Diversity of polyporous fungi (Polyporaceae) in northern boreal forests: effects of forest site type and logging intensity. Scand J For Res 19:152–163. doi:10.1080/02827580410026294

    Google Scholar 

  • Sippola A-L, Mönkkönen M, Renvall P (2005) Polypore diversity in the herb-rich woodland key habitats of Koli National Park in eastern Finland. Biol Conserv 126:260–269. doi:10.1016/j.biocon.2005.06.002

    Google Scholar 

  • Slocum MG (2000) Logs and fern patches as recruitment sites in a tropical pasture. Restor Ecol 8:408–413

    Google Scholar 

  • Spetich MA, Parker GR (1998) Distribution of biomass in an Indiana old-growth forest from 1926 to 1992. Am Midl Nat 139:90–107

    Google Scholar 

  • Spetich MA, Shifley SR, Parker GR (1999) Regional distribution and dynamics of coarse woody debris in midwestern old-growth forests. For Sci 45:302–313

    Google Scholar 

  • Stavishenko IV, Zalesov SV, Luganskii NA, Kryazhevskikh NA, Morozov AE (2002) Communities of wood-attacking fungi in the region of oil and gas production. Russ J Ecol 33:161–169. doi:10.1023/A:1015423422744

    Google Scholar 

  • Steeger C, Hitchcock CL (1998) Influence of forest structure and diseases on nest-site selection by red-breasted nuthatches. J Wildl Manage 62:1349–1358

    Google Scholar 

  • Stephenson NL, van Mantgem PJ (2005) Forest turnover rates follow global and regional patterns of productivity. Ecol Lett 8:524–531. doi:10.1111/j.1461-0248.2005.00746.x

    Google Scholar 

  • Stewart JD, Landhausser SM, Stadt KJ, Lieffers VJ (2001) Predicting natural regeneration of white spruce in boreal mixedwood understories. For Chron 77:1006–1013

    Google Scholar 

  • Stöckli B (1995) Moderholz für die Naturverjüngung im Bergwald; Anleitung zum Moderanbau. Wald Holz 76:16:8–14

    Google Scholar 

  • Stokland J, Kauserud H (2004) Phellinus nigrolimitatus—a wood-decomposing fungus highly influenced by forestry. For Ecol Manage 187:333–343. doi:10.1016/j.foreco.2003.07.004

    Google Scholar 

  • Storaunet KO (2004) Models to predict time since death of Picea abies snags. Scand J For Res 19:250–260. doi:10.1080/02827580410024142

    Google Scholar 

  • Storaunet KO, Rolstad J (2004) How long do Norway spruce snags stand? Evaluating four estimation methods. Can J For Res 34:376–383

    Google Scholar 

  • Storaunet KO, Rolstad J, Gjerde I, Gundersen VS (2005) Historical logging, productivity, and structural characteristics of boreal coniferous forests in Norway. Silva Fenn 39:429–442

    Google Scholar 

  • Strange N, Christensen M, Heilmann-Clausen J (2004) Some policy implications of biodiversity conservation in Danish natural forests. Scand J For Res 19:138–149. doi:10.1080/14004080410034227

    Google Scholar 

  • Sturtevant BR, Bissonette JA, Long JN, Roberts DW (1997) Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecol Appl 7:702–712

    Google Scholar 

  • Sugita H, Tani M (2001) Difference in microhabitat-related regeneration patterns between two subalpine conifers, Tsuga diversifolia and Abies mariesii, on Mount Hayachine, northern Honshu, Japan. Ecol Res 16:423–433. doi:10.1046/j.1440-1703.2001.00408.x

    Google Scholar 

  • Sugita H, Nagaike T (2005) Microsites for seedling establishment of subalpine conifers in a forest with moss-type undergrowth on Mt. Fuji, central Honshu, Japan. Ecol Res 20:678–685. doi:10.1007/s11284-005-0086-1

    Google Scholar 

  • Suter W, Schielly B (1998) Liegendes Totholz: ein wichtiges Strukturmerkmal für die Habitatqualität von Kleinsäugern und kleinen Carnivoren im Wald. Schweiz Z Forstw 149:795–807

    Google Scholar 

  • Sverdrup-Thygeson A, Lindemayer DB (2003) Ecological continuity and assumed indicator fungi in boreal forest: the importance of the landscape matrix. For Ecol Manage 174:353–363. doi:10.1016/S0378-1127(02)00043-9

    Google Scholar 

  • Swift MJ (1977) The ecology of wood decomposition. Sci Prog 64:175–199

    CAS  Google Scholar 

  • Szewczyk J, Szwagrzyk J (1996) Tree regeneration on rotten wood and on soil in old-growth stand. Vegetatio 122:37–46

    Google Scholar 

  • Takahashi K (1997) Regeneration and coexistence of two subalpine conifer species in relation to dwarf bamboo in the understorey. J Veg Sci 8:529–536

    Google Scholar 

  • Takahashi KH, Kagaya T (2005) Guild structure of wood-rotting fungi based on volume and decay stage of coarse woody debris. Ecol Res 20:215–222. doi:10.1007/s11284-004-0025-6

    Google Scholar 

  • Takahashi M, Sakai Y, Ootomo R, Shiozaki M (2000) Establishment of tree seedlings and water-soluble nutrients in coarse woody debris in an old-growth Picea-abies forest in Hokkaido, northern Japan. Can J For Res 30:1148–1155

    Google Scholar 

  • Tikkanen O-P, Martikainen P, Hyvärinen E, Junninen K, Kouki J (2006) Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann Zool Fenn 43:373–383

    Google Scholar 

  • Toljander YK, Lindahl BD, Holmer L, Högberg NOS (2006) Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148:625–631. doi:10.1007/s00442-006-0406-3

    PubMed  Google Scholar 

  • Torgersen TR, Bull EL (1995) Down logs as habitat for forest-dwelling ants—the primary prey of pileated woodpeckers in northeastern Oregon. Northwest Sci 69:294–303

    Google Scholar 

  • Torres JA, González G (2005) Wood decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican dry and wet forests: a 13-year case study. Biotropica 37:452–456. doi:10.1111/j.1744-7429.2005.00059.x

    Google Scholar 

  • Treseder KK, Allen MF (2000) Black boxes and missing sinks: fungi in global change research. Mycol Res 104:1282–1283. doi:10.1017/S0953756200229778

    Google Scholar 

  • Ucitel D, Christian DP, Graham JM (2003) Vole use of coarse woody debris and implications for habitat and fuel management. J Wildl Manage 67:65–72

    Google Scholar 

  • Unterseher M, Tal O (2006) Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy. Mycol Res 110:169–178. doi:10.1016/j.mycres.2005.08.002

    PubMed  Google Scholar 

  • Urcelay C, Robledo G (2004) Community structure of polypores (Basidiomycota) in Andean alder wood in Argentina: functional groups among wood-decay fungi? Aust Ecol 29:471–476. doi:10.1111/j.1442-9993.2004.01387.x

    Google Scholar 

  • Uzunović A, O’Callahan D, Kreber B (2004) Mechanical tree harvesters spread fungal inoculum onto freshly felled Canadian and New Zealand pine logs. For Prod J 54:34–40

    Google Scholar 

  • Vainio EJ, Lipponen K, Hantula J (2001) Persistence of a biocontrol strain of Phlebiopsis gigantea in conifer stumps and its effects on within-species genetic diversity. For Pathol 31:285–295

    Google Scholar 

  • Vanderpoorten A, Sotiaux A, Engels P (2005) A GIS-based survey for the conservation of bryophytes at the landscape scale. Biol Conserv 121:189–194. doi:10.1016/j.biocon.2004.04.018

    Google Scholar 

  • Vasiliauskas R, Vasiliauskas A, Stenlid J, Matelis A (2004) Dead trees and protected polypores in unmanaged north-temperate forest stands of Lithuania. For Ecol Manage 193:355–370. doi:10.1016/j.foreco.2004.01.048

    Google Scholar 

  • Vasiliauskas R, Lygis V, Larsson K-H, Stenlid J (2005) Airborne fungal colonisation of coarse woody debris in North Temperate Picea abies forest: impact of season and local spatial scale. Mycol Res 109:487–496. doi:10.1017/S0953756204002084

    PubMed  Google Scholar 

  • Virolainen KM, Ahlroth P, Hyvarinen E, Korkeamaki E, Mattila J, Paivinen J, Rintala T, Suomi T, Suhonen J (2000) Hot spots, indicator taxa, complementarity and optimal networks of taiga. Proc R Soc Lond B 267:1143–1147. doi:10.1098/rspb.2000.1120

    CAS  Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For Ecol Manage 202:67–82. doi:10.1016/j.foreco.2004.07.018

    Google Scholar 

  • Wesolowski T (2005) Virtual conservation: how the European Union is turning a blind eye to its vanishing primeval forests. Conserv Biol 19:1349–1358. doi:10.1111/j.1523-1739.2005.00265.x

    Google Scholar 

  • Whalley AJS (1996) The xylariaceous way of life. Mycol Res 100:897–922

    Article  Google Scholar 

  • Wichmann L, Ravn HP (2001) The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. For Ecol Manage 148:31–39. doi:10.1016/S0378-1127(00)00477-1

    Google Scholar 

  • Woldendorp G, Keenan RJ (2005) Coarse woody debris in Australian forest ecosystems: a review. Aust Ecol 30:834–843. doi:10.1111/j.1442-9993.2005.01526.x

    Google Scholar 

  • Woods CM, Woodward S, Pinard MA, Redfern DB (2006) Colonization of Sitka spruce stumps by decay-causing hymenomycetes in paired inoculations. Mycol Res 110:854–868. doi:10.1016/j.mycres.2006.02.007

    PubMed  Google Scholar 

  • Wormington KR, Lamb D, McCallum HI, Moloney DJ (2003) The characteristics of six species of living hollow-bearing trees and their importance for arboreal marsupials in the dry sclerophyll forests of southeast Queensland, Australia. For Ecol Manage 182:75–92. doi:10.1016/S0378-1127(03)00010-0

    Google Scholar 

  • Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal forests. Can J For Res 33:1211–1226

    Google Scholar 

  • Yin XW (1999) The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. Oecologia 121:81–98. doi:10.1007/s004420050909

    Google Scholar 

  • Zhong JW, van der Kamp PJ (1999) Pathology of conifer seed and timing of germination in high-elevation subalpine fir and Engelmann spruce forests of the southern interior of British Columbia. Can J For Res 29:187–193

    Google Scholar 

  • Zielonka T, Piatek G (2004) The herb and dwarf shrubs colonization of decaying logs in subalpine forest in the Polish Tatra Mountains. Plant Ecol 172:63–72. doi:10.1023/B:VEGE.0000026037.03716.fc

    Google Scholar 

Download references

Acknowledgments

Many thanks to S. Bertolo, T. Coch, I. Currado, J. F. Dobremez, A. Fischlin, K. J. Gaston, E. Lange, M. Haywood, M. Jeger, H. Keene, M. Lauerer, L. Paul, R. Smith, J.-P. Sorg, P. H. Warren, P. J. Weisberg, R. Whittaker and R. Winkler for discussing ideas contained in this review, and to two anonymous reviewers for helpful comments on a previous version of the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pautasso.

Additional information

Communicated by Rainer Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonsdale, D., Pautasso, M. & Holdenrieder, O. Wood-decaying fungi in the forest: conservation needs and management options. Eur J Forest Res 127, 1–22 (2008). https://doi.org/10.1007/s10342-007-0182-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-007-0182-6

Keywords

Navigation