Skip to main content
Log in

Forecasting Apple Fruit Color Intensity with Machine Learning Methods

Vorhersagemodell für die Entwicklung der Fruchtfarbe bei Apfel mittels Methoden des maschinellen Lernens

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

In this study, we focused on the possibility of forecasting the development of skin color in apples on the basis of weather forecast by using a machine learning methods. We used supervised learning and generated models via the use of six decision trees. The purpose of the research was to build models that would allow for in-practice-acceptable accuracy in the prediction of the development of fruit skin color (especial a colour parameter a*), for three apple varieties. For cv. ‘Gala, Brookfield’, the most accurate models were generated by using decision tree J48 (89.13% accuracy). For late ripening cv. ‘Fuji, Kiku 8’ and cv. ‘Braeburn, Maririred’, the most accurate model was obtained by using decision tree LMT (91.73 and 96.65% accuracy). The data confirm that the applicability of predictive models strongly depends on the accuracy of weather forecasts. In regard to the seven-day weather forecast, which was used for expert models, the accuracy of the models was, on average, reduced by 10.73%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa O (1991) Effect of temperature on anthocyanin accumulation in apple fruit as affected by cultivar, stage of fruit ripening and bagging. J Hortic Sci 66:763–768

    Article  CAS  Google Scholar 

  • Awad MA (2001) The apple skin: colourful healthiness. Developmental and environmental regulation of flavonoids and chloragenic acid in apples. Dissertation, Wageningen Universiteit, Wageningen, Netherlands

  • Awad MA, Jager A (2002) Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in Elstar apple skin. Sci Hortic 92:265–276

    Article  CAS  Google Scholar 

  • Bae R, Kim K (2006) Anatomical observations of anthocyanin rich cells in apple skins. HortScience 41:733–736

    CAS  Google Scholar 

  • Bing L (2012) A survey of opinion mining and sentiment analysis. In: Aggarwal CC, Zhai CX (eds) Mining text data. doi:10.1007/978-1-4614-3223-4_13

  • Bizjak J, Petkovsek MM, Stampar F, Veberic R (2013) Changes in primary metabolites and polyphenols in the peel of ‘Braeburn’ apples (Malus domestica Borkh.) during advanced maturation. J Agric Food Chem 61:10283–10292

    Article  CAS  PubMed  Google Scholar 

  • Bizjak J, Weber N, Mikulic PM, Slatnar A, Stampar F (2013) Influence of phostrade ca on color development and anthocyanin content of ‘Braeburn’ apple (Malus domestica Brkh). HortScience 48(2):193–199

    CAS  Google Scholar 

  • Blanke MM (2015) Möglichkeiten zur Verbesserung der Rotfärbung bei Äpfeln. Erwerb Obstbau 57:47–62

    Article  Google Scholar 

  • Chen LS, Li P, Cheng L (2008) Effects of high temperature coupled with high light on the balance between photo oxidation and photo protection in the sun-exposed peel of apple. Planta 228:745–756

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Watkins JCH (2001) Reinforcement learning. Encyclopedia of cognitive science. MacMillan Press, London, pp 1–14

    Google Scholar 

  • Fouché JR, Roberts SC, Midgley SJE, Steyn WJ (2010) Peel color and blemishes in ‘Granny Smith’ apples in relation to canopy light environment. HortScience 45(6):899–905

    Google Scholar 

  • Germšek B, Unuk T (2014) Kakovost jabolk sort ‘Gala, Brookfield’ in ‘Fuji, Kiku 8’ pod in izven protitočne mreže. Acta Agric Sloven 103:137–144

    Article  Google Scholar 

  • Hrnčić D (2008) Uglaševanje parametrov rotacijskega gozda in klasifikatorjev v paketu Weka z genetskim algoritmom. Inštitut Jožefa Štefana, Ljubljana, pp 7–15

    Google Scholar 

  • Iba W, Langley P (1992) Induction of one-level decision trees. In Proceedings of the ninth international conference on machine learning. Elsevier Inc., Amsterdam, pp 233–240

  • Iglesias I, Alegre S (2009) The effects of reflective film on fruit color, quality, canopy light distribution, and profitability of ‘Mondial Gala’ apples. Horttechnology 19(3):488–498

    Google Scholar 

  • Jakopič J, Štampar F, Veberič R (2009) The influence of expousure to light on the phenolic content of Fuji apple. Sci Hortic 123(2):234–239

    Article  Google Scholar 

  • Ju ZG, Yuan YB, Liou CL, Xin SH (1995) Relationship among phenylalanine ammonia-lyase activity, simple phenol concentrations and anthocyanin accumulation in apple. Sci Hortic 61:215–226

    Article  CAS  Google Scholar 

  • Kompare B (1995) The use of artifical intelligence in ecological modelling. Dissertation, Royal Danish School of Pharmacy, Copenhagen, Denmark

  • Kondo S, Hiraoka K, Kobayashi S, Honda C, Terahara N (2002) Changes in the expression of anthocyanin biosynthetic genes during apple development. J Am Soc Hortic Sci 127:971–976

    CAS  Google Scholar 

  • Kononenko I (2002) Nekateri vidiki strojnega učenja, umetne inteligence in zavesti. FRI, Fire-Rescue International. Zbornik kognitivne konference

    Google Scholar 

  • Kononenko I (2005) Strojno učenje, Zal. FE in FRI, naklada 300, 2. popravki in dopolnjena Izdaja, Ljubljana. 452

    Google Scholar 

  • Korifi R, Dreau LY, Antinelli JF, Valls R, Dupuy N (2013) CIE L*a*b* color space predictive models for colorimetry devices – Analysis of perfume quality. Talanta 104:58–66

    Article  CAS  PubMed  Google Scholar 

  • Lancaster JE (1992) Regulation of skin colour in apples. Crit Rev Plant Sci 10:487–502

  • Lancaster JE, Grant JE, Lister CE, Taylor M (1994) Skin color in apples – influenced of copigmentation and plastid pigments in shade and darkness of red color in five genotypes. HortScience 119:63–69

    CAS  Google Scholar 

  • Macheix JJ, Feluriet A, Billot J (1990) Fruit phenolics. CRC Press, Boca Raton

    Google Scholar 

  • Mitchell T (1997) Machine learning. MIT Press, McGraw-Hill, New York

    Google Scholar 

  • Palmer JW, Warrington IJ (2000) Underlying principles of successful apple planting systems. Acta Hortic 513:357–363

    Google Scholar 

  • Rozman Č, Pažek K, Bavec M, Bavec F, Turk J, Majkovič D (2006) The Multi-criteria analyis of spelt food processing alternatives on small organic farms. J Sustain Agric 28(2):159–179

    Article  Google Scholar 

  • Saure MC (1990) External control of anthocyanin formation in apple: a review. Sci Hortic 42:181–218

    Article  CAS  Google Scholar 

  • Seehuber C, Damerow L, Kunz A, Blanke MM (2014) Mechanische Fruchtbehangsregulierung bei Apfel verbessert Fruchtgröße, Fruchtfestigkeit, Fruchtausfärbung und die Source: Sink-Verhältnisse mit mehr Einzelfruchtständen (Singlets) bei ‘Gala’. Erwerb Obstbau 56:49–58

    Article  Google Scholar 

  • Sharples RO (1973) Orchards and climatic factors. In: Fidler JC, Wilkinson BG, Edney KL, Sharples RO (eds) The biology of apple and pear storage. CAB, Farnham Royal, pp 173–224

    Google Scholar 

  • Stanjko D, Vindiš P (2011) Napoved pridelka jabolk in hrušk z metodo analize slike. Fakulteta za kmetijstvo in biosistemske vede Univerze v Mariboru, Maribor, pp 2–21

    Google Scholar 

  • Taiwo OA (2010) Types of machine learning algorithms, new advances in machine learning. University of Portsmouth United Kingdom, Portsmouth, pp 19–48

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tijskens LMM, Unuk T, Tojnko S, Hribar J, Simčič M (2009) Biological variation in the colour development of Golden Delicious apples in the orchard. J Sci Food Agric 89(12):2045–2051

    Article  CAS  Google Scholar 

  • Tojnko S, Unuk T, Lerš M (2014) Vpliv strojne rezi na kakovost jabolk. 10 Lombargerjevi dnevi vol. 2014. Fakulteta za kmetijstvo in biosistemske vede Maribor, Pivola, pp 1–23

    Google Scholar 

  • Treutter D (2001) Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul 34:71–89

    Article  CAS  Google Scholar 

  • Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci 170:571–578

    Article  CAS  Google Scholar 

  • Unuk T (2006) Analiza interakcije odmerkov dušika pri optimiranju pridelka jablan (Malus domestica B.) sorte Zlati delišes. Fakulteta za kmetijstvo, Doktorska disertacija: 1–123

  • Unuk T, Hribar J, Tojnko S, Simčič M, Poržl T, Plestenjak A, Vidrih R (2008) Effect of nitrogen application and crop load on external and internal fruit quality. Parameters of apples. Dtsch Lebensm Rundsch 104:127–134

    CAS  Google Scholar 

  • Unuk T, Tijskens LMM, Germšek B, Zadravec P, Vogrin A, Hribar J, Simčič M, Tojnko S (2012) Effect of location in the canopy on the colour development of three apple cultivars during growth. J Sci Food Agric 92(12):2450–2458

    Article  CAS  PubMed  Google Scholar 

  • Veberič R, Zadravec P, Štampar F (2007) Fruit quality of Fuji apple (Malus domestica Borkh) strains. J Sci Food Agric 87:593–599

    Article  Google Scholar 

  • Walter TE (1996) Factors affecting fruit colour in apples. A rewiev of world literature vol. 1967. East Malling Research Station, East Malling, pp 71–82 (Report)

    Google Scholar 

  • Weka (2014) description of the decision trees. http://www.cs.waikato.ac.nz/ml/weka/. Last access: 1 July 2014

    Google Scholar 

  • Whale SK, Singh Z (2007) Endogenous ethylene and color development in the skin of ‘Pink Lady’ apple. J Am Soc Hortic Sci 132:2028

    Google Scholar 

  • Whale SK, Singh Z, Behboudian MH, Janes J, Dhaliwal SS (2008) Fruit quality in ‘Cripp’s Pink’ apple, especially colour, as affected by preharvest sprays of aminoethoxyvinylglycine and ethephon. Sci Hortic 115:342–351

    Article  CAS  Google Scholar 

  • Widmer A (2001) Light intensity and quality under hail protection nets. Acta Hortic 557:421–426

    Article  Google Scholar 

  • Witten IH, Frank E (2005) Data Mining. Practical machine learning tools and techniques. Morgan Kaufman, San Francisco, pp_407-408

  • Zorc M (2009) Učenje optimalne odločitve s klasifikacijskimi drevesi. Diplomsko delo. Univerza v Ljubljani, Fakulteta za računalništvo in informatiko 13–14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Črtomir Rozman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germšek, B., Rozman, Č. & Unuk, T. Forecasting Apple Fruit Color Intensity with Machine Learning Methods. Erwerbs-Obstbau 59, 109–118 (2017). https://doi.org/10.1007/s10341-016-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-016-0305-7

Keywords

Schlüsselwörter

Navigation