Skip to main content
Log in

Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B +1 ) and RF power deposition of dipole antenna arrays for 1H magnetic resonance of the human brain at 1 GHz (23.5 T).

Materials and methods

Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz.

Results

Our results demonstrate that transmission fields suitable for 1H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B +1 in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array.

Conclusion

The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schaaf M (2015) Siemens healthcare GmbH, imaging and therapy systems, magnetic resonance. Erlangen, Germany, personal communication, Aug 2015

  2. Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR–from research to clinical applications? NMR Biomed 25(5):695–716

    Article  PubMed  Google Scholar 

  3. Niendorf T, Graessl A, Thalhammer C, Dieringer MA, Kraus O, Santoro D, Fuchs K, Hezel F, Waiczies S, Ittermann B, Winter L (2013) Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. J Magn Reson 229:208–222

    Article  CAS  PubMed  Google Scholar 

  4. Kraff O, Fischer A, Nagel AM, Monninghoff C, Ladd ME (2015) MRI at 7 tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 41(1):13–33

    Article  PubMed  Google Scholar 

  5. Sinnecker T, Kuchling J, Dusek P, Dorr J, Niendorf T, Paul F, Wuerfel J (2015) Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 6(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kremer S, Renard F, Achard S, Lana-Peixoto MA, Palace J, Asgari N, Klawiter EC, Tenembaum SN, Banwell B, Greenberg BM, Bennett JL, Levy M, Villoslada P, Saiz A, Fujihara K, Chan KH, Schippling S, Paul F, Kim HJ, de Seze J, Wuerfel JT, Cabre P, Marignier R, Tedder T, van Pelt D, Broadley S, Chitnis T, Wingerchuk D, Pandit L, Leite MI, Apiwattanakul M, Kleiter I, Prayoonwiwat N, Han M, Hellwig K, van Herle K, John G, Hooper DC, Nakashima I, Sato D, Yeaman MR, Waubant E, Zamvil S, Stuve O, Aktas O, Smith TJ, Jacob A, O’Connor K (2015) Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder. JAMA Neurol 72(7):815–822

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trattnig S, Bogner W, Gruber S, Szomolanyi P, Juras V, Robinson S, Zbyn S, Haneder S (2015) Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR Biomed. doi:10.1002/nbm.3272 (epub ahead of print)

  8. Niendorf T, Paul K, Oezerdem C, Graessl A, Klix S, Huelnhagen T, Hezel F, Rieger J, Waiczies H, Frahm J, Nagel A, Oberacker E, Winter L (2015) W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? Technical advances, practical considerations, applications, and clinical opportunities. NMR Biomed doi: 10.1002/nbm.3268 (epub ahead of print)

  9. Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, Santoro D, Niendorf T, Muller DN, Neininger M, Cavallaro A, Eckardt KU, Schmieder RE, Luft FC, Uder M, Titze J (2012) (23) Na magnetic resonance imaging of tissue sodium. Hypertension 59(1):167–172

    Article  CAS  PubMed  Google Scholar 

  10. Umathum R, Rosler MB, Nagel AM (2013) In vivo 39 K MR imaging of human muscle and brain. Radiology 269(2):569–576

    Article  PubMed  Google Scholar 

  11. Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W (2014) In vivo Cl MR imaging in humans: a feasibility study. Radiology. doi:10.1148/radiol.13131725 (epub ahead of print)

    PubMed  Google Scholar 

  12. Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T (2015) Eight-channel transceiver RF coil array tailored for (1) H/(19) F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737

    Article  CAS  PubMed  Google Scholar 

  13. Graessl A, Ruehle A, Waiczies H, Resetar A, Hoffmann SH, Rieger J, Wetterling F, Winter L, Nagel AM, Niendorf T (2015) Sodium MRI of the human heart at 7.0 T: preliminary results. NMR Biomed 28(8):967–975

    Article  CAS  PubMed  Google Scholar 

  14. Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, Deimling M, Rakova N, Muller DN, Luft FC, Titze J, Niendorf T (2015) Skin sodium measured with (23) Na MRI at 7.0 T. NMR Biomed 28(1):54–62

    CAS  PubMed  Google Scholar 

  15. Lu A, Atkinson IC, Zhou XJ, Thulborn KR (2013) PCr/ATP ratio mapping of the human head by simultaneously imaging of multiple spectral peaks with interleaved excitations and flexible twisted projection imaging readout trajectories at 9.4 T. Magn Reson Med 69(2):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodgers CT, Clarke WT, Snyder C, Vaughan JT, Neubauer S, Robson MD (2014) Human cardiac 31P magnetic resonance spectroscopy at 7 Tesla. Magn Reson Med 72(2):304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmid AI, Meyerspeer M, Robinson SD, Goluch S, Wolzt M, Fiedler GB, Bogner W, Laistler E, Krssak M, Moser E, Trattnig S, Valkovic L (2015) Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using P gradient-Echo MRI at 7 Tesla. Magn Reson Med. doi:10.1002/mrm.25822 (epub ahead of print)

    Google Scholar 

  18. Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733

    Article  CAS  PubMed  Google Scholar 

  19. Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging 32(1):82–87

    Article  PubMed  Google Scholar 

  20. Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71(5):1819–1825

    Article  CAS  PubMed  Google Scholar 

  21. Scheffler K, Ehses P (2015) High-resolution mapping of neuronal activation with balanced SSFP at 9.4 tesla. Magn Reson Med. doi:10.1002/mrm.25890 (epub ahead of print)

    Google Scholar 

  22. Pohmann R, Speck O, Scheffler K (2015) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med 75(2):801–809

    Article  PubMed  Google Scholar 

  23. Shah NJ (2015) Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct Funct 220(4):1867–1884

    Article  PubMed  Google Scholar 

  24. Thulborn K, Lui E, Guntin J, Jamil S, Sun Z, Claiborne TC, Atkinson IC (2015) Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging. NMR Biomed 29(2):137–143

    Article  PubMed  Google Scholar 

  25. Tian J, Shrivastava D, Strupp J, Zhang J, Vaughan JT (2012) From 7 T to 10.5 T: B 1+, SAR and temperature distribution for head and body MRI. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Victoria, p 2666

  26. Tian F, Lagore L, Vaughan JT (2015) Dipole arrays for MR head imaging: 7.0 T vs. 10.5 T. In: Proceedings of the 23rd Annual Meeting of the ISMRM, Toronto, p 3116

  27. Vaughan JT, Delabarre L, Tian F, Sohn SM, Shrivastava D, Adriany G, Ugurbil K (2014) Toward 10.5 T MRI. In: Proceedings of the 22nd Annual Meeting of the ISMRM, Milan, p 4822

  28. Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann R, Graessl A, Wust P, Niendorf T (2013) Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla. PLoS One 8(4):e61661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rickey DW, Gordon R, Huda W (1992) On the lifting the inherent limitations of Positron Emission Tomography by using magnetic fields (MagPET). Automedica 14(1):355–369

    Google Scholar 

  30. Shah NJ, Herzog H, Weirich C, Tellmann L, Kaffanke J, Caldeira L, Kops ER, Qaim SM, Coenen HH, Iida H (2014) Effects of magnetic fields of up to 9.4 T on resolution and contrast of PET images as measured with an MR-BrainPET. PLoS ONE 9(4):e95250

    Article  PubMed  PubMed Central  Google Scholar 

  31. Winter L, Oezerdem C, Hoffmann W, van de Lindt T, Periquito J, Ji Y, Ghadjar P, Budach V, Wust P, Niendorf T (2015) Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz). Radiat Oncol 10(1):201

    Article  PubMed  PubMed Central  Google Scholar 

  32. Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States (2013) Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council. Washington, DC: The National Academies Press, p 232

  33. Polenova T, Budinger TF (2016) Ultrahigh field NMR and MRI: science at a crossroads. Report on a jointly-funded NSF, NIH and DOE workshop, held on November 12–13, 2015 in Bethesda, Maryland, USA. J Magn Reson

  34. Adriany G, Van den Moortele PF, Wiesinger F, Moeller S, Strupp J, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K (2005) Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445

    Article  PubMed  Google Scholar 

  35. Adriany G, Van de Moortele PF, Ritter J, Moeller S, Auerbach E, Akgün C, Snyder C, Vaughan T, Ugurbil K (2008) A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn Reson Med 59(3):590–597

    Article  PubMed  Google Scholar 

  36. Snyder CJ, DelaBarre L, Metzger GJ, van de Moortele PF, Akgun C, Ugurbil K, Vaughan JT (2009) Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 61(3):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K (2009) Whole-body imaging at 7T: preliminary results. Magn Reson Med 61(1):244–248

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wiggins GC, Potthast A, Triantafyllou C, Wiggins CJ, Wald LL (2005) Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging. Magn Reson Med 54(1):235–240

    Article  CAS  PubMed  Google Scholar 

  39. Aussenhofer SA, Webb AG (2014) An eight-channel transmit/receive array of TE01 mode high permittivity ceramic resonators for human imaging at 7T. J Magn Reson 243:122–129

    Article  CAS  PubMed  Google Scholar 

  40. Versluis M, Tsekos N, Smith N, Webb A (2009) Simple RF design for human functional and morphological cardiac imaging at 7 tesla. J Magn Reson 200(1):161–166

    Article  CAS  PubMed  Google Scholar 

  41. Winter L, Kellman P, Renz W, Grassl A, Hezel F, Thalhammer C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T (2012) Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0 T: implications for clinical imaging. Eur Radiol 22(10):2211–2220

    Article  PubMed  Google Scholar 

  42. Thalhammer C, Renz W, Winter L, Hezel F, Rieger J, Pfeiffer H, Graessl A, Seifert F, Hoffmann W, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Kellman P, Niendorf T (2012) Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application. J Magn Reson Imaging JMRI 36(4):847–857

    Article  PubMed  Google Scholar 

  43. Grassl A, Winter L, Thalhammer C, Renz W, Kellman P, Martin C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T (2013) Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 82(5):752–759

  44. Shajan G, Kozlov M, Hoffmann J, Turner R, Scheffler K, Pohmann R (2013) A 16 channel dual row transmit array in combination with a 31-element receive array for human brain imaging at 9.4 T. Magn Reson Med 71(2):870–879

    Article  Google Scholar 

  45. Brown R, Deniz CM, Zhang B, Chang G, Sodickson DK, Wiggins GC (2014) Design and application of combined 8-channel transmit and 10-channel receive arrays and radiofrequency shimming for 7-T shoulder magnetic resonance imaging. Invest Radiol 49(1):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao W, Cohen-Adad J, Polimeni JR, Keil B, Guerin B, Setsompop K, Serano P, Mareyam A, Hoecht P, Wald LL (2013) Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magn Reson Med 72(1):291–300

    Article  PubMed  PubMed Central  Google Scholar 

  47. Raaijmakers A, Ipek O, Klomp D, Possanzini C, Harvey P, Lagendijk J, van den Berg C (2011) Design of a radiative surface coil array element at 7 T: the single side adapted dipole antenna. Magn Reson Med 66(5):1488–1497

    Article  CAS  PubMed  Google Scholar 

  48. Özerdem C, Winter L, Hoffmann W, Waiczies H, Seeman R, Santoro D, Müller A, Ok A, Lindel T, Ittermann B, Niendorf T (2012) Design and evaluation of a dipole antenna TX/RX element as a building block for combined MR imaging and RF hyperthermia at 7.0 T. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Victoria, Australia, p 2641

  49. Ipek O, Raaijmakers AJ, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA (2012) Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip. Phys Med Biol 57(2):343–355

    Article  CAS  PubMed  Google Scholar 

  50. Ipek O, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA (2014) Intersubject local SAR variation for 7T prostate MR imaging with an eight-channel single-side adapted dipole antenna array. Magn Reson Med 71(4):1559–1567

    Article  PubMed  Google Scholar 

  51. Oezerdem C, Winter L, Graessl A, Paul K, Els A, Weinberger O, Rieger J, Kühne A, Dieringer M, Hezel F, Voit D, Frahm J, Niendorf T (2015) 16 Channel bow tie antenna transceiver array for cardiac magnetic resonance at 7.0 T. Magn Reson Med (epub ahead of print)

  52. Raaijmakers AJ, Italiaander M, Voogt IJ, Luijten PR, Hoogduin JM, Klomp DW, van den Berg CA (2015) The fractionated dipole antenna: A new antenna for body imaging at 7 Tesla. Magn Reson Med 75(3):1366–1374

    Article  PubMed  Google Scholar 

  53. Sadiku MN (2001) Elements of electromagnetics. Vol 428. Oxford University Press, New York

    Google Scholar 

  54. Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251

    Article  CAS  PubMed  Google Scholar 

  55. Lattanzi R, Sodickson DK (2012) Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights. Magn Reson Med 68(1):286–304

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wiggins GC, Zhang B, Lattanzi R, Chen G, Daniel S (2012) The electric dipole array: an attempt to match the ideal current pattern for central SNR at 7 Tesla. Proc Intl Soc Magn Reson Med 20:541

    Google Scholar 

  57. Lattanzi R, Sodickson D, Grant A, Zhu Y (2009) Electrodynamic constraints on homogeneity and radiofrequency power deposition in multiple coil excitations. Magn Reson Med 61(2):315–334

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roemer P, Edelstein W, Hayes C, Souza S, Mueller O (1990) The NMR phased array. Magn Reson Med 16(2):192–225

    Article  CAS  PubMed  Google Scholar 

  59. Zhu Y, Hardy CJ, Sodickson DK, Giaquinto RO, Dumoulin CL, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Ohliger MA, Rofsky NM (2004) Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 52(4):869–877

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sodickson DK, Hardy CJ, Zhu Y, Giaquinto RO, Gross P, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Ohliger MA, Grant AK, Rofsky NM (2005) Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications. Acad Radiol 12(5):626–635

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. Prog Electromagn Res 32:65–87

    Article  Google Scholar 

  62. Miller AKH, Alston RL, Corsellis JAN (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropath Appl Neuro 6(2):119–132

    Article  CAS  Google Scholar 

  63. Christ A, Kainz W, Hahn E, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J (2010) The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55:N23–N38

    Article  PubMed  Google Scholar 

  64. Hasgall P, Neufeld E, Gosselin MC, Klingenböck A, Kuster N (2013) IT’ is Database for thermal and electromagnetic parameters of biological tissues. http://www.itis.ethz.ch/database. Version 2.4, Published July 30th, 2013. Accessed 1 Jan 2014

  65. Wittig T (2007) SAR overview. CST User Manual

  66. Oh S, Carluccio G, Collins CM (2011) Method and tool for improved, rapid n-gram average SAR determination. Proc Intl Soc Mag Reson Med 19:3868

    Google Scholar 

  67. Eaton R, Kmiec C (2008) Electrical losses in coaxial cables. In International wire & cable symposium. Providence, USA

    Google Scholar 

  68. Liu W, Kao CP, Collins CM, Smith MB, Yang QX (2013) On consideration of radiated power in RF field simulations for MRI. Magn Reson Med 69(1):290–294

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kuehne A, Goluch S, Waxmann P, Seifert F, Ittermann B, Moser E, Laistler E (2015) Power balance and loss mechanism analysis in RF transmit coil arrays. Magn Reson Med 74(4):1165–1176

    Article  PubMed  Google Scholar 

  70. Hoult D, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34(2):425–433

    CAS  Google Scholar 

  71. Hoult DI (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12(1):46–67

    Article  CAS  PubMed  Google Scholar 

  72. Vaughan JT, Garwood M, Collins C, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith M (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30

    Article  CAS  PubMed  Google Scholar 

  73. Collins CM, Smith MB (2001) Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90°” RF pulse for the head in the birdcage coil. Magn Reson Med 45(4):684–691

    Article  CAS  PubMed  Google Scholar 

  74. Adriany G, DelaBarre L, Eryaman Y, Lagore R, Erturk A, Metzger GJ, Vaughan JT, Ugurbil K, Van de Moortele PF (2016) Initial imaging results with a 10.5T geometrically adjustable dipole array. In: Proceedings of ISMRM UHF Workshop

  75. van den Bergen B, van den Berg CA, Klomp DW, Lagendijk JJ (2009) SAR and power implications of different RF shimming strategies in the pelvis for 7T MRI. J Magn Reson Imaging 30(1):194–202

    Article  PubMed  Google Scholar 

  76. Metzger GJ, Auerbach EJ, Akgun C, Simonson J, Bi X, Ugurbil K, van de Moortele PF (2013) Dynamically applied B1 + shimming solutions for non-contrast enhanced renal angiography at 7.0 Tesla. Magn Reson Med 69(1):114–126

    Article  PubMed  PubMed Central  Google Scholar 

  77. Graessl A, Renz W, Hezel F, Dieringer M, Winter L, Oezerdem C, Kellman P, Santoro D, Lindel T, Frauenrath T, Pfeiffer H, Niendorf T (2014) Modular 32 channel transceiver coil array for cardiac MRI at 7T. Magn Reson Med 72(1):276–290

    Article  PubMed  Google Scholar 

  78. Orzada S, Maderwald S, Poser BA, Bitz AK, Quick HH, Ladd ME (2010) RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI. Magn Reson Med 64(2):327–333

    PubMed  Google Scholar 

  79. Wu X, Schmitter S, Auerbach EJ, Ugurbil K, Van de Moortele PF (2014) Mitigating transmit B 1 inhomogeneity in the liver at 7T using multi-spoke parallel transmit RF pulse design. Quant Imaging Med Surg 4(1):4–10

    PubMed  PubMed Central  Google Scholar 

  80. Setsompop K, Alagappan V, Gagoski B, Witzel T, Polimeni J, Potthast A, Hebrank F, Fontius U, Schmitt F, Wald LL, Adalsteinsson E (2008) Slice-selective RF pulses for in vivo B1 + inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil. Magn Reson Med 60(6):1422–1432

    Article  PubMed  PubMed Central  Google Scholar 

  81. Eaton SS, Eaton GR (2012) The world as viewed by and with unpaired electrons. J Magn Reson 223:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded (in part, T.N.) by the Helmholtz Alliance ICEMED—Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Network Fund of the Helmholtz Association (ICEMED-Project 1210251). The authors wish to thank Russell Hodge (Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany) for brainstorming as well as for editing and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thoralf Niendorf.

Ethics declarations

Conflict of interest

Thoralf Niendorf is founder and CEO of MRI.TOOLS GmbH, Berlin, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, L., Niendorf, T. Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond. Magn Reson Mater Phy 29, 641–656 (2016). https://doi.org/10.1007/s10334-016-0559-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0559-y

Keywords

Navigation